European Biophysics Journal

, Volume 41, Issue 10, pp 901–913 | Cite as

Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes

  • Clare L. Armstrong
  • Matthew A. Barrett
  • Arno Hiess
  • Tim Salditt
  • John Katsaras
  • An-Chang Shi
  • Maikel C. Rheinstädter


Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 Å−1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer’s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be “softer” than fluid bilayers, but better ordered than bilayers in the gel phase.


Lipid membrane Cholesterol Lateral membrane dynamics Nanoscale dynamics Liquid-ordered phase Inelastic neutron scattering Dispersion relation 



This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the National Research Council Canada (NRC), the Canada Foundation for Innovation (CFI) and the Ontario Ministry of Economic Development and Innovation. John Katsaras is supported by Oak Ridge National Laboratory’s (ORNL) Program Development (PD) and Laboratory Directed Research and Development (LDRD) programs.


  1. Adachi T (2000) A new method for determining the phase in the X-ray diffraction structure analysis of phosphatidylcholine:alcohol. Chem Phys Lipids 107:93–97PubMedCrossRefGoogle Scholar
  2. Almeida P, Vaz W, Thompson T (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747PubMedCrossRefGoogle Scholar
  3. Annett JF (2004) Superconductivity, superfluids and condensates. Oxford University Press, OxfordGoogle Scholar
  4. Armstrong CL, Sandqvist E, Rheinstadter MC (2011) Protein-protein interactions in membranes. Protein Pept Lett 18:344–353PubMedCrossRefGoogle Scholar
  5. Armstrong C, Barrett M, Toppozini L, Kucerka N, Yamani Z, Katsaras J, Fragneto G, Rheinstädter MC (2012) Co-existence of gel and fluid lipid domains in single-component phospholipid membranes. Soft Matter 8:4687–4694CrossRefGoogle Scholar
  6. Bayerl T (2000) Collective membrane motions. Curr Opin Colloid Interface Sci 5:232–236CrossRefGoogle Scholar
  7. Bloom M, Bayerl T (1995) Membranes studied using neutron scattering and NMR. Can J Phys 73:687–696CrossRefGoogle Scholar
  8. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224PubMedCrossRefGoogle Scholar
  9. Brüning B, Rheinstädter MC, Hiess A, Weinhausen B, Reusch T, Aeffner S, Salditt T (2010) Influence of cholesterol on the collective dynamics of the phospholipid acyl chains in model membranes. Eur Phys J E 31:419–428PubMedCrossRefGoogle Scholar
  10. Chen S, Liao C, Huang H, Weiss T, Bellisent-Funel M, Sette F (2001) Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic X-ray scattering. Phys Rev Lett 86:740–743PubMedCrossRefGoogle Scholar
  11. Chen PJ, Liu Y, Weiss TM, Huang HW, Sinn H, Alp EE, Alatas A, Said A, Chen SH (2003) Studies of short-wavelength collective molecular motions in lipid bilayers using high resolution inelastic X-ray scattering. Biophys Chem 105:721–741PubMedCrossRefGoogle Scholar
  12. de Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106:3654–3658PubMedCrossRefGoogle Scholar
  13. de Meyer FJM, Benjamini A, Rodgers JM, Misteli Y, Smit B (2010) Molecular simulation of the dmpc-cholesterol phase diagram. J Phys Chem B 106:10451–10461CrossRefGoogle Scholar
  14. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorf C, Schönle A, Hell SW (2009) Direc observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162PubMedCrossRefGoogle Scholar
  15. Ehrig J, Petrov EP, Schwille P (2011) Phase separation and near-critical fluctuations in two-component lipid membranes: Monte Carlo simulations on experimentally relevant scales. New J Phys 13:045019Google Scholar
  16. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580PubMedCrossRefGoogle Scholar
  17. Fragneto G, Rheinstädter M (2007) Structural and dynamical studies from bio-mimetic systems: an overview. CR Phys 8:865–883CrossRefGoogle Scholar
  18. Harroun T, Katsaras J, Wassall S (2006) Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry 45:1227–1233PubMedCrossRefGoogle Scholar
  19. Harroun T, Katsaras J, Wassall S (2008) Cholesterol is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry 47:7090–7096PubMedCrossRefGoogle Scholar
  20. Herrera FE, Pantano S (2012) Structure and dynamics of nano-sized raft-like domains on the plasma membrane. J Chem Phys 136:1–33Google Scholar
  21. Hildenbrand MF, Bayerl TM (2005) Differences in the modulation of collective membrane motions by ergosterol, lanosterol, and cholesterol: a dynamic light scattering study. Biophys J 88:3360–3367PubMedCrossRefGoogle Scholar
  22. Hirn RB, Bayerl TM (1999) Collective membrane motions in the mesoscopic range and their modulation by the binding of a monomolecular protein layer of streptavidin studied by dynamic light scattering. Phys Rev E 59:5987–5994CrossRefGoogle Scholar
  23. Hirn R, Bayerl T, Rädler J, Sackmann E (1999) Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferometry. Faraday Discuss 111:17–30CrossRefGoogle Scholar
  24. Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157PubMedCrossRefGoogle Scholar
  25. Hub JS, Salditt T, Rheinstädter MC, de Groot BL (2007) Short range order and collective dynamics of DMPC bilayers. acomparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophysical J 93:3156–3168CrossRefGoogle Scholar
  26. Katsaras J (1998) Adsorbed to a rigid substrate, dimyristoylphosphatidylcholine multibilayers attain full hydration in all mesophases. Biophys J 75:2157–2162PubMedCrossRefGoogle Scholar
  27. Kaye MD, Schmalzl K, Nibali VC, Tarek M, Rheinstädter MC (2011) Ethanol enhances collective dynamics of lipid membranes. Phys Rev E 83:050,907Google Scholar
  28. King GI, Worthington CR (1971) Analytic continuation as a method of phase determination. Phys Lett 35A:259–260Google Scholar
  29. König S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992) Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. J Phys II France 2:1589–1615CrossRefGoogle Scholar
  30. König S, Sackmann E, Richter D, Zorn R, Carlile C, Bayerl T (1994) Molecular dynamics of water in oriented dppc multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J Chem Phys 100:3307–3316CrossRefGoogle Scholar
  31. König S, Bayerl T, Coddens G, Richter D, Sackmann E (1995) Hydration dependence of chain dynamics and local diffusion in l-alpha-dipalmitoylphosphtidylcholine multilayers studied by incoherent quasi-elastic neutron scattering. Biophys J 68:1871–1880PubMedCrossRefGoogle Scholar
  32. Kŭcerka N, Marquardt D, Harroun T, Nieh MP, Wassall S, Katsaras J (2009) The functional significance of lipid diversity: orientation of cholesterol in bilayers is determined by lipid species. J Am Chem Soc 131:16358–16359PubMedCrossRefGoogle Scholar
  33. Kŭcerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:2626–2637PubMedCrossRefGoogle Scholar
  34. Léonard A, Escrive C, Laguerre M, Pebay-Peyroula E, Néri W, Pott T, Katsaras J, Dufourc EJ (2001) Location of cholesterol in dmpc membranes. a comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17:2019–2030CrossRefGoogle Scholar
  35. Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433PubMedCrossRefGoogle Scholar
  36. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedCrossRefGoogle Scholar
  37. Lipowsky, R, Sackmann, E (eds) (1995) Structure and dynamics of membranes, handbook of biological physics. vol 1, Elsevier, AmsterdamGoogle Scholar
  38. Martinez-Seara H, Róg T, Karttunen M, Vattulainen I, Reigada R (2010) Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes. PLoS ONE 5:e11162CrossRefGoogle Scholar
  39. Meinhold L, Smith JC, Kitao A, Zewail AH (2007) Picosecond fluctuating protein energy landscape mapped by pressure-temperature molecular dynamics simulation. Proc Natl Acad Sci USA 104:17261–17265PubMedCrossRefGoogle Scholar
  40. Mihailescu M, Soubias O, Worcester D, White S, Gawrisch K (2011) Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and nmr. J Membr Biol 239:63–71Google Scholar
  41. Mouritsen O (2010) The liquid-ordered state comes of age. Biochim Biophys Acta 1798:1286–1288PubMedCrossRefGoogle Scholar
  42. Murtola T, Róg T, Falck E, Karttunen M, Vattulainen I (2006) Transient ordered domains in single-component phospholipid bilayers. Phys Rev Lett 97:238102PubMedCrossRefGoogle Scholar
  43. Nagle JF, Wiener MC (1989) Relations for lipid bilayers. Biophys J 55(55):309–313PubMedCrossRefGoogle Scholar
  44. Nagle J, Zhang R, Tristram-Nagle S, Sun W, Petrache H, Suter R (1996) X-ray structure determination of fully hydrated lα phase dipalmitoylphosphatidylcholine bilayers. Biophys J 70:1419–1431PubMedCrossRefGoogle Scholar
  45. Nevzorov A, Brown M (1997) Bilayers from comparative analysis of 2H and 13C NMR relaxation data as a function of frequency and temperature. J Chem Phys 107:10288–10310CrossRefGoogle Scholar
  46. Pabst G, Kŭcerka N, Nieh MP, Rheinstädter M, Katsaras J (2010) Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 163(6):460–479PubMedCrossRefGoogle Scholar
  47. Paciaroni A, Orecchini A, Cornicchi E, Marconi M, Petrillo C, Haertlein M, Moulin M, Schober H, Tarek M, Sacchetti F (2008) Fingerprints of amorphous ice-like behavior in the vibrational density of states of protein hydration water. Phys Rev Lett 101:148104Google Scholar
  48. Papanikolaou B, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S (2005) Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase cd39. J Biol Chem 28:26406–26414CrossRefGoogle Scholar
  49. Paula S, Volkov A, Van Hoek A, Haines T, Deamer D (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348PubMedCrossRefGoogle Scholar
  50. Petrie R, Schnetkamp P, Patel K, Awasthi-Kalia M, Deans J (2000) Transient translocation of the b cell receptor and src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol 165:1220–1227PubMedGoogle Scholar
  51. Pfeiffer W, Henkel T, Sackmann E, Knorr W (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Europhys Lett 8:201–206CrossRefGoogle Scholar
  52. Pfeiffer W, König S, Legrand J, Bayerl T, Richter D, Sackmann E (1993) Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23:457–462CrossRefGoogle Scholar
  53. Pike L (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598PubMedCrossRefGoogle Scholar
  54. Pike L (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328PubMedCrossRefGoogle Scholar
  55. Rheinstädter MC (2008) Collective molecular dynamics in proteins and membranes. Biointerfaces 3:FB83–FB90Google Scholar
  56. Rheinstädter MC, Ollinger C, Fragneto G, Demmel F, Salditt T (2004a) Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett 93:108107Google Scholar
  57. Rheinstädter MC, Ollinger C, Fragneto G, Salditt T (2004) Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: exploring the dynamics of biological membranes with neutrons. Phys B 350:136–139CrossRefGoogle Scholar
  58. Rheinstädter MC, Seydel T, Demmel F, Salditt T (2005) Molecular motions in lipid bilayers studied by the neutron backscattering technique. Phys Rev E 71:061,908Google Scholar
  59. Rheinstädter MC, Häussler W, Salditt T (2006a) Dispersion relation of lipid membrane shape fluctuations by neutron spin-echo spectrometry. Phys Rev Lett 97:048103Google Scholar
  60. Rheinstädter MC, Seydel T, Häußler W, Salditt T (2006b) Exploring the collective dynamics of lipid membranes with inelastic neutron scattering. J Vac Sci Technol A 24:1191–1196CrossRefGoogle Scholar
  61. Rheinstädter MC, Seydel T, Salditt T (2007) Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction. Phys Rev E 75:011907Google Scholar
  62. Rheinstädter MC, Schmalzl K, Wood K, Strauch D (2009) Protein-protein interaction in purple membrane. Phys Rev Lett 103:128104Google Scholar
  63. Ridsdale A, Denis M, Gougeon PY, Ngsee JK, Presley JF, Zha X (2006) Cholesterol is required for efficient endoplasmic reticulum-to-golgi transport of secretory membrane proteins. Mol Biol Cell 17:1593–1605PubMedCrossRefGoogle Scholar
  64. Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci USA 105:17367–17372PubMedCrossRefGoogle Scholar
  65. Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering effects of cholesterol and its analogues. Biochim Biophys Acta 1788:97–121PubMedCrossRefGoogle Scholar
  66. Salditt T (2000) Structure and fluctuations of highly oriented phospholipid membranes. Curr Opin Colloid Interface Sci 5:19–26CrossRefGoogle Scholar
  67. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  68. Takeda T, Kawabata Y, Seto H, Komura S, Gosh S, Nagao M, Okuhara D (1999) Neutron spin echo investigations of membrane undulations in complex fluids involving amphilphiles. J Phys Chem Solids 60:1375–1377CrossRefGoogle Scholar
  69. Tarek M, Tobias D, Chen SH, Klein M (2001) Short wavelength collective dynamics in phospholipid bilayers: a molecular dynamics study. Phys Rev Lett 87:238101Google Scholar
  70. Thewalt JL, Bloom M (1992) Phosphatidylcholine: cholesterol phase diagrams. Biophys J 63:1176–1181PubMedCrossRefGoogle Scholar
  71. Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF (2002) Structure of gel phase dmpc determined by X-ray diffraction. Biophys J 83:3324–3335PubMedCrossRefGoogle Scholar
  72. Vist R, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2 h nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464PubMedCrossRefGoogle Scholar
  73. Weiss T, Chen PJ, Sinn H, Alp E, Chen S, Huang H (2003) Collective chain dynamics in lipid bilayers by inelastic X-ray scattering. Biophys J 84:3767–3776PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • Clare L. Armstrong
    • 1
  • Matthew A. Barrett
    • 1
  • Arno Hiess
    • 2
  • Tim Salditt
    • 3
  • John Katsaras
    • 4
    • 5
  • An-Chang Shi
    • 1
  • Maikel C. Rheinstädter
    • 1
    • 5
  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada
  2. 2.European Spallation Source ESS ABLundSweden
  3. 3.Institute for X-Ray PhysicsGeorg-August-University GöttingenGöttingenGermany
  4. 4.Neutron Sciences DirectorateOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Canadian Neutron Beam CentreNational Research CouncilChalk RiverCanada

Personalised recommendations