European Biophysics Journal

, Volume 41, Issue 6, pp 561–570 | Cite as

Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy

  • Johannes Rheinlaender
  • Anna Gräbner
  • Lisa Ott
  • Andreas Burkovski
  • Tilman E. Schäffer
Original Paper

Abstract

Many bacteria are characterized by nanoscale ultrastructures, for example S-layers, flagella, fimbriae, or pili. The last two are especially important for attachment to different abiotic and biotic surfaces and for host–pathogen interactions. In this study, we investigated the geometric and elastic properties of pili of different Corynebacterium diphtheriae strains by atomic force microscopy (AFM). We performed quantitative contour-length analysis of bacterial pili and found that the visible contour length of the pili can be described by a log-normal distribution. Our data revealed significant strain-specific variations in the mean visible contour length of the pili, ranging from 260 to 1,590 nm. To estimate their full contour length, which is not directly accessible from the AFM images, we developed a simple correction model. Using this model, we determined the mean full contour length as 510–2,060 nm. To obtain the persistence length we used two different methods of analysis, one based on the end-to-end distance of the pili and one based on the bending angles of short segments. In comparison, the bending angle analysis proved to be more precise and resulted in persistence lengths in the narrow range of 220–280 nm, with no significant strain-specific variations. This is small compared with some other bacterial polymers, for example type IV pili, F-pili, or flagella.

Keywords

Bacteria AFM Contour length Persistence length Stiffness 

Supplementary material

249_2012_818_MOESM1_ESM.doc (480 kb)
Supplementary material 1 (DOC 480 kb)

References

  1. Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88(4):2737–2744. doi:10.1529/biophysj.104.052811 PubMedCrossRefGoogle Scholar
  2. Anselmetti D, Hansmeier N, Kalinowski J, Martini J, Merkle T, Palmisano R, Ros R, Schmied K, Sischka A, Toensing K (2007) Analysis of subcellular surface structure, function and dynamics. Anal Bioanal Chem 387(1):83–89. doi:10.1007/s00216-006-0789-3 PubMedCrossRefGoogle Scholar
  3. Arce FT, Carlson R, Monds J, Veeh R, Hu FZ, Stewart PS, Lal R, Ehrlich GD, Avci R (2009) Nanoscale structural and mechanical properties of nontypeable Haemophilus influenzae biofilms. J Bacteriol 191(8):2512–2520. doi:10.1128/jb.01596-08 PubMedCrossRefGoogle Scholar
  4. Baumann CG, Smith SB, Bloomfield VA, Bustamante C (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci USA 94(12):6185–6190PubMedCrossRefGoogle Scholar
  5. Bednar J, Furrer P, Katritch V, Stasiak A, Dubochet J, Stasiak A (1995) Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J Mol Biol 254(4):579–594. doi:10.1006/jmbi.1995.0640 PubMedCrossRefGoogle Scholar
  6. Bertuccini L, Baldassarri L, von Hunolstein C (2004) Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb Pathog 37(3):111–118. doi:10.1016/j.micpath.2004.06.002 PubMedCrossRefGoogle Scholar
  7. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy. Langmuir 11(2):655–659. doi:10.1021/la00002a050 CrossRefGoogle Scholar
  8. Colombo AV, Hirata R Jr, de Souza CM, Monteiro-Leal LH, Previato JO, Formiga LC, Andrade AF, Mattos-Guaraldi AL (2001) Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 197(2):235–239. doi:10.1111/j.1574-6968.2001.tb10609.x PubMedCrossRefGoogle Scholar
  9. Dorst L, Smeulders AWM (1987) Length estimators for digitized contours. Comput Vis Graph Image Process 40(3):311–333CrossRefGoogle Scholar
  10. Dupres V, Alsteens D, Pauwels K, Dufrêne YF (2009) In vivo imaging of S-layer nanoarrays on Corynebacterium glutamicum. Langmuir 25(17):9653–9655. doi:10.1021/la902238q PubMedCrossRefGoogle Scholar
  11. Fälker S, Nelson AL, Morfeldt E, Jonas K, Hultenby K, Ries J, Melefors Ö, Normark S, Henriques-Normark B (2008) Sortase-mediated assembly and surface topology of adhesive pneumococcal pili. Mol Microbiol 70(3):595–607. doi:10.1111/j.1365-2958.2008.06396.x PubMedCrossRefGoogle Scholar
  12. Gaspar AH, Ton-That H (2006) Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol 188(4):1526–1533. doi:10.1128/jb.188.4.1526-1533.2006 PubMedCrossRefGoogle Scholar
  13. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934. doi:10.1083/jcb.120.4.923 PubMedCrossRefGoogle Scholar
  14. Guttilla IK, Gaspar AH, Swierczynski A, Swaminathan A, Dwivedi P, Das A, Ton-That H (2009) Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J Bacteriol 191(18):5603–5612. doi:10.1128/jb.00627-09 PubMedCrossRefGoogle Scholar
  15. Hirata R Jr, Souza SMS, Rocha de Souza CM, Andrade AF, Monteiro-Leal LH, Formiga LCD, Mattos-Guaraldi AL (2004) Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog 36(3):125–130. doi:10.1016/j.micpath.2003.10.002 Google Scholar
  16. Hirata R Jr, Napoleao F, Monteiro-Leal LH, Andrade AFB, Nagao PE, Formiga LCD, Fonseca LS, Mattos-Guaraldi AL (2002) Intracellular viability of toxigenic Corynebacterium diphtheriae strains in Hep-2 cells. FEMS Microbiol Lett 215(1):115–119. doi:10.1111/j.1574-6968.2002.tb11379.x PubMedCrossRefGoogle Scholar
  17. Hogan M, LeGrange J, Austin B (1983) Dependence of DNA helix flexibility on base composition. Nature 304(5928):752–754. doi:10.1038/304752a0 PubMedCrossRefGoogle Scholar
  18. Huxley HE, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67(6):2411–2421. doi:10.1016/s0006-3495(94)80728-3 PubMedCrossRefGoogle Scholar
  19. Jiao Y, Schäffer TE (2004) Accurate height and volume measurements on soft samples with the atomic force microscope. Langmuir 20(23):10038–10045. doi:10.1021/la048650u PubMedCrossRefGoogle Scholar
  20. Kang HJ, Paterson NG, Gaspar AH, Ton-That H, Baker EN (2009) The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proc Natl Acad Sci USA 106(40):16967–16971. doi:10.1073/pnas.0906826106 PubMedCrossRefGoogle Scholar
  21. Koch AL (1966) The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly. J Theoret Biol 12(2):276–290. doi:10.1016/0022-5193(66)90119-6 CrossRefGoogle Scholar
  22. Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci USA 91(26):12962–12966PubMedCrossRefGoogle Scholar
  23. Landau LD, Lifshits EM, Pitaevskiĭ LP (1980) Statistical physics. Course of theoretical physics, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  24. Landau LD, Lifshitz EM, Kosevich AM, Pitaevskiĭ LP (1986) Theory of elasticity. Course of theoretical physics, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  25. Leung KM, Wanger G, Guo Q, Gorby Y, Southam G, Lau WM, Yang J (2011) Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter 7(14):6617–6621. doi:10.1039/c1sm05611e CrossRefGoogle Scholar
  26. Limpert E, Stahel WA (2011) Problems with using the normal distribution—and ways to improve quality and efficiency of data analysis. PLoS ONE 6(7):e21403. doi:10.1371/journal.pone.0021403 PubMedCrossRefGoogle Scholar
  27. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341–352. doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 CrossRefGoogle Scholar
  28. Mandlik A, Swierczynski A, Das A, Ton-That H (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64(1):111–124. doi:10.1111/j.1365-2958.2007.05630.x PubMedCrossRefGoogle Scholar
  29. Mandlik A, Das A, Ton-That H (2008) The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA 105(37):14147–14152. doi:10.1073/pnas.0806350105 PubMedCrossRefGoogle Scholar
  30. Mantelli S, Muller P, Harlepp S, Maaloum M (2011) Conformational analysis and estimation of the persistence length of DNA using atomic force microscopy in solution. Soft Matter 7(7):3412–3416. doi:10.1039/c0sm01160f CrossRefGoogle Scholar
  31. Miller E, Garcia T, Hultgren S, Oberhauser AF (2006) The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91(10):3848–3856. doi:10.1529/biophysj.106.088989 PubMedCrossRefGoogle Scholar
  32. Nagashima H, Asakura S (1980) Dark-field light microscopic study of the flexibility of F-actin complexes. J Mol Biol 136(2):169–182PubMedCrossRefGoogle Scholar
  33. Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M, Burkovski A (2010) Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 10:257. doi:10.1186/1471-2180-10-257 PubMedCrossRefGoogle Scholar
  34. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. doi:10.1038/nature03661 PubMedCrossRefGoogle Scholar
  35. Rivetti C, Codeluppi S (2000) Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B- to A-form transition on mica. Ultramicroscopy 87(1–2):55–66. doi:10.1016/s0304-3991(00)00064-4 CrossRefGoogle Scholar
  36. Rivetti C, Guthold M, Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: Equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264(5):919–932. doi:10.1006/jmbi.1996.0687 PubMedCrossRefGoogle Scholar
  37. Rogers EA, Das A, Ton-That H (2011) Adhesion by pathogenic corynebacteria. In: Linke D, Goldman A (eds) Bacterial adhesion, vol 715. Advances in experimental medicine and biology. Springer, the Netherlands, pp 91–103. doi:10.1007/978-94-007-0940-9_6
  38. Silverman PM, Clarke MB (2010) New insights into F-pilus structure, dynamics, and function. Integr Biol 2(1):25–31. doi:10.1039/b917761b CrossRefGoogle Scholar
  39. Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98(12):6901–6904. doi:10.1073/pnas.121171698 PubMedCrossRefGoogle Scholar
  40. Swierczynski A, Ton-That H (2006) Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J Bacteriol 188(17):6318–6325. doi:10.1128/jb.00606-06 PubMedCrossRefGoogle Scholar
  41. Taylor WH, Hagerman PJ (1990) Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure: II. NaCl-dependence of DNA flexibility and helical repeat. J Mol Biol 212(2):363–376. doi:10.1016/0022-2836(90)90131-5 PubMedCrossRefGoogle Scholar
  42. Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol 188(2):370–377. doi:10.1128/jb.188.2.370-377.2006 PubMedCrossRefGoogle Scholar
  43. Trachtenberg S, Hammel I (1992) The rigidity of bacterial flagellar filaments and its relation to filament polymorphism. J Struct Biol 109(1):18–27. doi:10.1016/1047-8477(92)90063-g PubMedCrossRefGoogle Scholar
  44. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72(3):1335–1346. doi:10.1016/s0006-3495(97)78780-0 PubMedCrossRefGoogle Scholar
  45. Wang YA, Yu X, Overman S, Tsuboi M, Thomas GJ Jr, Egelman EH (2006) The structure of a filamentous bacteriophage. J Mol Biol 361(2):209–215. doi:10.1016/j.jmb.2006.06.027 PubMedCrossRefGoogle Scholar
  46. Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning 32(3):134–149. doi:10.1002/sca.20193 PubMedCrossRefGoogle Scholar
  47. Yanagawa R, Honda E (1976) Presence of pili in species of human and animal parasites and pathogens of the genus corynebacterium. Infect Immun 13(4):1293–1295PubMedGoogle Scholar
  48. Yanagida T, Nakase M, Nishiyama K, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307(5946):58–60. doi:10.1038/307058a0 PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • Johannes Rheinlaender
    • 1
  • Anna Gräbner
    • 1
  • Lisa Ott
    • 2
  • Andreas Burkovski
    • 2
  • Tilman E. Schäffer
    • 1
    • 3
  1. 1.Institute of Applied PhysicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Chair for MicrobiologyUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Institute of Applied PhysicsUniversity of TübingenTübingenGermany

Personalised recommendations