European Biophysics Journal

, Volume 41, Issue 10, pp 831–840 | Cite as

Structural characterization of lipidic systems under nonequilibrium conditions



This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes. The focus is placed on two main topics: First, an overview of advanced experimental small-angle X-ray scattering (SAXS) setups combined with various sample manipulation techniques including, for instance, stop-flow mixing or rapid temperature-jump perturbation is given. Second, our recent synchrotron SAXS findings on the dynamic structural response of gold nanoparticle-loaded vesicles upon exposure to an ultraviolet light source, the impact of rapidly mixing negatively charged vesicles with calcium ions, and in situ hydration-induced formation of inverted-type liquid-crystalline phases loaded with the local anesthetic bupivacaine are summarized. These in situ time-resolved experiments allow real-time monitoring of the dynamics of the structural changes and the possible formation of intermediate states in the millisecond to second range. The need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed. For pharmaceutically relevant applications, it is essential to combine these investigations with appropriate in vitro and in vivo studies.


Phase transitions Inverted-type liquid-crystalline phases Nonequilibrium conditions Time-resolved SAXS Stop-flow mixing Temperature-jump 


  1. Ågren P, Linden M, Rosenholm JB, Schwarzenbacher R, Kriechbaum M, Amenitsch H, Laggner P, Blanchard J, Schuth F (1999) Kinetics of cosurfactant-surfactant-silicate phase behavior. 1. Short-chain alcohols. J Phys Chem B 103:5943–5948CrossRefGoogle Scholar
  2. Alam MM, Oka T, Ohta N, Yamazaki M (2011) Kinetics of low pH-induced lamellar to bicontinuous cubic phase transition in dioleoylphosphatidylserine/monoolein. J Chem Phys 134:145102PubMedCrossRefGoogle Scholar
  3. Amenitsch H, Rappolt M, Kriechbaum M, Mio H, Laggner P et al (1998) First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J Synchrotron Rad 5:506–508CrossRefGoogle Scholar
  4. Angelov B, Angelova A, Garamus VM, Lebas G, Lesieur S et al (2007) Small-angle neutron and X-ray scattering from amphiphilic stimuli-responsive diamond-type bicontinuous cubic phase. J Am Chem Soc 129:13474–13479PubMedCrossRefGoogle Scholar
  5. Angelov B, Angelova A, Vainio U, Garamus VM, Lesieur S et al (2009) Long-living intermediates during a lamellar to a diamond-cubic lipid phase transition: a small-angle X-ray scattering investigation. Langmuir 25:3734–3742PubMedCrossRefGoogle Scholar
  6. Angelov B, Angelova A, Mutafchieva R, Lesieur S, Vainio U et al (2011) SAXS investigation of a cubic to a sponge (L(3)) phase transition in self-assembled lipid nanocarriers. Phys Chem Chem Phys 13:3073–3081PubMedCrossRefGoogle Scholar
  7. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C (2005) Proteocubosomes: nanoporous vehicles with tertiary organized fluid interfaces. Langmuir 21:4138–4143PubMedCrossRefGoogle Scholar
  8. Angelova A, Angelov B, Garamus VM, Couvreur P, Lesieur S (2012) Small-angle X-ray scattering investigations of biomolecular confinement, loading, and release from liquid-crystalline nanochannel assemblies. J Phys Chem Lett 3:445–457CrossRefGoogle Scholar
  9. Brooks NJ, Ces O, Templer RH, Seddon JM (2011) Pressure effects on lipid membrane structure and dynamics. Chem Phys Lipids 164:89–98PubMedCrossRefGoogle Scholar
  10. Caffrey M (1989) Structural, mesomorphic and time-resolved studies of biological liquid crystals and lipid membranes using synchrotron X-radiation. In: Mandelkow E (ed) Topics in Current Chemistry. Springer, Berlin, pp 75–109Google Scholar
  11. Chang CM, Bodmeier R (1998) Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm 173:51–60CrossRefGoogle Scholar
  12. Conn CE, Ces O, Mulet X, Finet S, Winter R, Seddon JM, Templer RH (2006) Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases. Phys Rev Lett 96:108102PubMedCrossRefGoogle Scholar
  13. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450PubMedCrossRefGoogle Scholar
  14. de Campo L, Yaghmur A, Sagalowicz L, Leser ME, Watzke H, Glatter O (2004) Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 20:5254–5261PubMedCrossRefGoogle Scholar
  15. Deng CX, Sieling F, Pan H, Cui JM (2004) Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 30:519–526PubMedCrossRefGoogle Scholar
  16. DePonte DP, Nass K, Stellato F, Liang M, Chapman HN (2011) Sample injection for pulsed x-ray sources. Proc SPIE 8078:80780MCrossRefGoogle Scholar
  17. Dong YD, Tilley AJ, Larson I, Lawrence MJ, Amenitsch H et al (2010) Nonequilibrium effects in self-assembled mesophase materials: unexpected supercooling effects for cubosomes and hexosomes. Langmuir 26:9000–9010PubMedCrossRefGoogle Scholar
  18. Fong WK, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226PubMedCrossRefGoogle Scholar
  19. Fong WK, Hanley TL, Thierry B, Kirby N, Boyd BJ (2010) Plasmonic nanorods provide reversible control over nanostructure of self-assembled drug delivery materials. Langmuir 26:6136–6139PubMedCrossRefGoogle Scholar
  20. Fong WK, Malic N, Evans RA, Hawley A, Boyd BJ, Hanley TL (2012) Alkylation of spiropyran moiety provides reversible photo-control over nanostructured soft materials. Biointerphases 7:3–8PubMedCrossRefGoogle Scholar
  21. Innocenzi P, Malfatti L, Kidchob T, Costacurta S, Falcaro P, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) Time-resolved simultaneous detection of structural and chemical changes during self-assembly of mesostructured films. J Phys Chem C 111:5345–5350CrossRefGoogle Scholar
  22. Kaasgaard T, Drummond CJ (2006) Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 8:4957–4975PubMedCrossRefGoogle Scholar
  23. Laggner P (1988) X-ray studies on biological membranes using synchrotron radiation. In: Mandelkow E (ed) Topics in Current Chemistry. Springer, Berlin, pp 173–202Google Scholar
  24. Laggner P, Kriechbaum M (1991) Phospholipid phase transitions: kinetics and structural mechanisms. Chem Phys Lipids 57:121–145PubMedCrossRefGoogle Scholar
  25. Laggner P, Kriechbaum M, Rappolt M, Pabst G, Amenitsch H, Johs A, Lohner K, Zweytick D, Koschuch R, Abuja P (2005) Pharmaceutical solid-state characterization by small-and wide-angle X-ray scattering. In: Zakrzewski A, Zakrzewski M (eds) Solid State Characterization of Pharmaceuticals. Assa International, Danbury, pp 407–448Google Scholar
  26. Larsson K (1989) Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem 93:7304–7314CrossRefGoogle Scholar
  27. Luzzati V (1997) Biological significance of lipid polymorphism: the cubic phases. Curr Opin Struct Biol 7:661–668PubMedCrossRefGoogle Scholar
  28. Malmsten M (2006) Soft drug delivery systems. Soft Matter 2:760–769CrossRefGoogle Scholar
  29. Malmsten M (2007) Phase transformations in self-assembly systems for drug delivery applications. J Disper Sci Technol 28:63–72CrossRefGoogle Scholar
  30. Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H (2009) Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Lab Chip 9:2063–2069PubMedCrossRefGoogle Scholar
  31. Moghimi SM, Peer D, Langer R (2011) Reshaping the future of nanopharmaceuticals: Ad Iudicium. ACS Nano 5:8454–8458PubMedCrossRefGoogle Scholar
  32. Mulet X, Gong X, Waddington LJ, Drummond CJ (2009) Observing self-assembled lipid nanoparticles building order and complexity through low-energy transformation processes. ACS Nano 3:2789–2797PubMedCrossRefGoogle Scholar
  33. Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, Nakagawa M (2011) Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Accounts Chem Res 44:1080–1093CrossRefGoogle Scholar
  34. Narayanan T (2009) High brilliance small-angle X-ray scattering applied to soft matter. Curr Opin Colloid Interface Sci 14:409–415CrossRefGoogle Scholar
  35. Nguyen TH, Hanley T, Porter CJH, Larson I, Boyd BJ (2010) Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J Pharm Pharmacol 62:844–855PubMedGoogle Scholar
  36. Nguyen TH, Hanley T, Porter CJH, Boyd BJ (2011) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Rel 153:180–186CrossRefGoogle Scholar
  37. Norling T, Lading P, Engstrom S, Larsson K, Krog N, Nissen SS (1992) Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol 19:687–692PubMedCrossRefGoogle Scholar
  38. Orthen A, Wagner H, Martoiu S, Amenitsch H, Bernstorff S, Besch HJ, Menk RH, Nurdan K, Rappolt M, Walenta AH, Werthenbach U (2004) Development of a two-dimensional virtual-pixel X-ray imaging detector for time-resolved structure research. J Synchrotron Rad 11:177–186CrossRefGoogle Scholar
  39. Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urtti A (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Rel 122:86–93CrossRefGoogle Scholar
  40. Paasonen L, Sipila T, Subrizi A, Laurinmaki P, Butcher SJ, Rappolt M, Yaghmur A, Urtti A, Yliperttula M (2010) Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Rel 147:136–143CrossRefGoogle Scholar
  41. Pabst G, Rappolt M, Amenitsch H, Bernstorff S, Laggner P (2000) X-ray kinematography of temperature-jump relaxation probes the elastic properties of fluid bilayers. Langmuir 16:8994–9001CrossRefGoogle Scholar
  42. Panine P, Finet S, Weiss TM, Narayanan T (2006) Probing fast kinetics in complex fluids by combined rapid mixing and small-angle X-ray scattering. Adv Colloid Interface Sci 127:9–18PubMedCrossRefGoogle Scholar
  43. Porcar L, Hamilton WA, Butler PD, Warr GG (2002) Scaling of shear-induced transformations in membrane phases. Phys Rev Lett 89:168301PubMedCrossRefGoogle Scholar
  44. Pornpattananangkul D, Olson S, Aryal S, Sartor M, Huang CM, Vecchio K, Zhang L (2010) Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 4:1935–1942PubMedCrossRefGoogle Scholar
  45. Prassl R, Pregetter M, Amenitsch H, Kriechbaum M, Schwarzenbacher R, Chapman JM, Laggner P (2008) Low density lipoproteins as circulating fast temperature sensors. PLoS ONE 3:e4079PubMedCrossRefGoogle Scholar
  46. Preiss MR, Bothun GD (2011) Stimuli-responsive liposome-nanoparticle assemblies. Exp Opin Drug Del 8:1025–1040CrossRefGoogle Scholar
  47. Rapp G, Goody RS (1991) Light as a trigger for time-resolved structural experiments on muscle, lipids, P21 and Bacteriorhodopsin. J Appl Crystallogr 24:857–865CrossRefGoogle Scholar
  48. Rappolt M, Pabst G, Rapp G, Kriechbaum M, Amenitsch H, Krenn C, Bernstorff S, Laggner P (2000) New evidence for gel-liquid crystalline phase coexistence in the ripple phase of phosphatidylcholines. Eur Biophy J 29:125–133CrossRefGoogle Scholar
  49. Rappolt M, Vidal MF, Kriechbaum M, Steinhart M, Amenitsch H, Bernstorff S, Laggner P (2003) Structural, dynamic and mechanical properties of POPC at low cholesterol concentration studied in pressure/temperature space. Eur Biophys J 31:575–585PubMedGoogle Scholar
  50. Rappolt M, Di Gregorio GM, Almgren M, Amenitsch H, Pabst G, Laggner P, Mariani P (2006) Non-equilibrium formation of the cubic Pn3 m phase in a monoolein/water system. Europhys Lett 75:267–273CrossRefGoogle Scholar
  51. Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P (2008) Conformational and hydrational properties during the L(beta)- to L(alpha)- and L(alpha)- to H(II)-phase transition in phosphatidylethanolamine. Chem Phys Lipids 154:46–55PubMedCrossRefGoogle Scholar
  52. Salentinig S, Sagalowicz L, Leser ME, Tedeschi C, Glatter O (2011) Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7:650–661CrossRefGoogle Scholar
  53. Seddon AM, Lotze G, Plivelic TS, Squires AM (2011) A Highly oriented cubic phase formed by lipids under shear. J Am Chem Soc 133:13860–13863PubMedCrossRefGoogle Scholar
  54. Squires AM, Templer RH, Seddon JM, Woenkhaus J, Winter R, Narayanan T, Finet S (2005) Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases. Phys Rev E 72:011502CrossRefGoogle Scholar
  55. Steinhart M, Kriechbaum M, Pressl K, Amenitsch H, Laggner P, Bernstorff S (1999) High-pressure instrument for small- and wide-angle x-ray scattering. II. Time-resolved experiments. Rev Sci Instrum 70:1540–1545CrossRefGoogle Scholar
  56. Tate MW, Gruner SM (1989) Temperature-dependence of the structural dimensions of the inverted hexagonal (Hii) phase of phosphatidylethanolamine-containing membranes. Biochemistry 28:4245–4253PubMedCrossRefGoogle Scholar
  57. Teixeira CV, Amenitsch H, Linton P, Linden M, Alfredsson V (2011) The role played by salts in the formation of SBA-15, an in situ small-angle X-ray scattering/diffraction study. Langmuir 27:7121–7131PubMedCrossRefGoogle Scholar
  58. Tilley A, Dong YD, Amenitsch H, Rappolt M, Boyd BJ (2011) Transfer of lipid and phase reorganisation in self-assembled liquid crystal nanostructured particles based on phytantriol. Phys Chem Chem Phys 13:3026–3032PubMedCrossRefGoogle Scholar
  59. Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput small angle X-ray scattering from proteins in solution using a microfluidic front-end. Anal Chem 80:3648–3654PubMedCrossRefGoogle Scholar
  60. Vandoolaeghe P, Barauskas J, Johnsson M, Tiberg F, Nylander T (2009) Interaction between lamellar (vesicles) and nonlamellar lipid liquid-crystalline nanoparticles as studied by time-resolved small-angle X-ray diffraction. Langmuir 25:3999–4008PubMedCrossRefGoogle Scholar
  61. Warren DB, Anby MU, Hawley A, Boyd BJ (2011) Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir 27:9528–9534PubMedCrossRefGoogle Scholar
  62. Weiss TM, Narayanan T, Wolf C, Gradzielski M, Panine P, Finet S, Helsby WI (2005) Dynamics of the self-assembly of unilamellar vesicles. Phys Rev Lett 94:038303PubMedCrossRefGoogle Scholar
  63. Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173CrossRefGoogle Scholar
  64. Wu GH, Milkhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA (2008) Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130:8175–8177PubMedCrossRefGoogle Scholar
  65. Yaghmur A, Glatter O (2009) Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 147–148:333–342PubMedCrossRefGoogle Scholar
  66. Yaghmur A, Rappolt M (2011) Recent advances in the characterization of lipid-based nanocarriers. In: Garti N, Amar-Yuli I (eds) Nanotechnologies for solubilization and delivery in foods, cosmetics and pharmaceuticals. DEStech, Lancaster, pp 187–208Google Scholar
  67. Yaghmur A, de Campo L, Sagalowicz L, Leser ME, Glatter O (2005) Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 21:569–577PubMedCrossRefGoogle Scholar
  68. Yaghmur A, Laggner P, Sartori B, Rappolt M (2008) Calcium triggered Lalpha-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS ONE 3:e2072PubMedCrossRefGoogle Scholar
  69. Yaghmur A, Kriechbaum M, Amenitsch H, Steinhart M, Laggner P, Rappolt M (2010a) Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems. Langmuir 26:1177–1185PubMedCrossRefGoogle Scholar
  70. Yaghmur A, Paasonen L, Yliperttula M, Urtti A, Rappolt M (2010b) Structural elucidation of light activated vesicles. J Phys Chem Lett 1:962–966CrossRefGoogle Scholar
  71. Yaghmur A, Larsen SW, Schmitt M, Østergaard J, Larsen C, Jensen H, Urtti A, Rappolt M (2011a) In situ characterization of lipidic bupivacaine-loaded formulations. Soft Matter 7:8291–8295CrossRefGoogle Scholar
  72. Yaghmur A, Sartori B, Rappolt M (2011b) The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Phys Chem Chem Phys 13:3115–3125PubMedCrossRefGoogle Scholar
  73. Yaghmur A, Rappolt M, Østergaard J, Larsen C, Larsen SW (2012) Characterization of bupivacaine-loaded formulations based on liquid crystalline phases and microemulsions: the effect of lipid composition. Langmuir 28:2881–2889PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  1. 1.Department of Pharmacy, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institute of Biophysics and Nanosystems Research (IBN)Austrian Academy of SciencesGrazAustria

Personalised recommendations