Advertisement

European Biophysics Journal

, Volume 41, Issue 6, pp 535–544 | Cite as

Comparative study of the interaction of fullerenol nanoparticles with eukaryotic and bacterial model membranes using solid-state NMR and FTIR spectroscopy

  • Patrick P. Brisebois
  • Alexandre A. Arnold
  • Yoann M. Chabre
  • René Roy
  • Isabelle Marcotte
Original Paper

Abstract

Native fullerene is notoriously insoluble in water and forms aggregates toxic to cell membranes, thus limiting its use in nanomedicine. In contrast, water-soluble fullerenol is compatible with biological systems and shows low in vivo toxicity on human cell lines. The interaction mechanism between these hydrophilic nanoparticles and biological membranes is however not well understood. Therefore, in this work, the effect of fullerenol on model eukaryotic and bacterial membranes was investigated using 31P- and 2H solid-state NMR as well as FTIR spectroscopy. DPPC/cholesterol and DPPC/DPPG bilayers were used to mimic eukaryotic and bacterial cell membranes, respectively. Our results show low affinity of fullerenol for DPPC/cholesterol bilayers but a clear interaction with model bacterial membranes. A preferential affinity of fullerenol for the anionic phospholipids DPPG in DPPC/DPPG membranes is also observed. Our data suggest that fullerenol remains at the water/bilayer interface of eukaryote-like membranes. They also indicate that the presence of a polar group such as DPPG’s hydroxyl moiety at the bilayer surface plays a key role in the interaction of fullerenol with membranes. Hydrogen bonding of fullerenol nanoparticles with DPPGs’ OH groups is most likely responsible for inducing lipid segregation in the lipid bilayer. Moreover, the location of the nanoparticles in the polar region of DPPG-rich regions appears to disturb the acyl chain packing and increase the membrane fluidity. The preferential interaction of fullerenol with lipids mostly found in bacterial membranes is of great interest for the design of new antibiotics.

Keywords

DPPC DPPG Antimicrobial activity Membrane interaction Lipid phase separation Polyhydroxylated fullerene 

Notes

Acknowledgments

This work was supported by the Fonds de recherche du Québec—Nature et Technologies (FRQNT) and the Centre Québécois sur les Matériaux Fonctionnels (CQMF), as well as the Canadian Foundation for Innovation (CFI). P.P.B. is grateful to the Canadian Institutes of Health Research (CIHR) Strategic Training Initiative in Chemical Biology for the award of an MSc scholarship. The authors wish to thank P. Bazire and C. Bourgeois for technical assistance.

References

  1. Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T (2009) Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci 14(2):69–72PubMedCrossRefGoogle Scholar
  2. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649Google Scholar
  3. Bensikaddour H, Snoussi K, Lins L, Van Bambeke F, Tulkens PM, Brasseur R, Goormatigh E, Mingeot-Leclercq MP (2008) Interactions of ciprofloxacin with DPPC and DPPG: fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis. Biochim Biophys Acta 1778:2535–2543PubMedCrossRefGoogle Scholar
  4. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerenes derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923PubMedCrossRefGoogle Scholar
  5. Braun M, Hirsch A (2000) Fullerenes derivatives in bilayer membranes: an overview. Carbon 38:1565–1572CrossRefGoogle Scholar
  6. Casal HL, Mantsch HH (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta 779:381–401PubMedGoogle Scholar
  7. D’Rozario R, Wee C, Wallace E, Sansom M (2009) The interaction of C60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnol 20:115102CrossRefGoogle Scholar
  8. Davis JH (1983) The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171PubMedGoogle Scholar
  9. Endress E, Bayerl S, Prechtel K, Maier C, Merkel R, Bayerl T (2002) The effect of cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study. Langmuir 18:3293–3299CrossRefGoogle Scholar
  10. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28PubMedCrossRefGoogle Scholar
  11. Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507PubMedGoogle Scholar
  12. Guo W, Hamilton J (1995) A multinuclear solid-state NMR study of phospholipid-cholesterol interactions. Dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry 34:14174–14184PubMedCrossRefGoogle Scholar
  13. Hirsch A (2010) The era of carbon allotropes. Nature Mat 9:868–871CrossRefGoogle Scholar
  14. Kilfoil ML, Morrow MR (1998) Slow motions in bilayers containing anionic phospholipids. Phys A 261:82–94CrossRefGoogle Scholar
  15. Killian JA, Borle F, Kruijff B, Seelig J (1986) Comparative 2H- and 31P-NMR study on the properties of palmitoyllysophosphatidylcholine in bilayers with gramicidin, cholesterol and dipalmitoylphosphatidylcholine. Biochim Biophys Acta 854:133–142PubMedCrossRefGoogle Scholar
  16. Kroto H, Heath J, O’Brien S, Curl R, Smalley R (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  17. Leroueil P, Hong S, Mecke A, Baker J, Orr B, Holl M (2007) Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc Chem Res 40:335–342PubMedCrossRefGoogle Scholar
  18. Mannock DA, Lewis R, McMullen T, McElhaney RN (2010) The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 163:403–448PubMedCrossRefGoogle Scholar
  19. Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57:213–226PubMedCrossRefGoogle Scholar
  20. Marcotte I, Ouellet M, Auger M (2004) Insights on the interaction of met-enkephalin with negatively-charged membranes: an infrared and solid-state NMR spectroscopic study. Chem Phys Lipids 127:175–187PubMedCrossRefGoogle Scholar
  21. Mashino T, Okuda K, Hirota T, Hirobe M (1991) Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg Med Chem Lett 9:2959–2962CrossRefGoogle Scholar
  22. Mateo-Alonso A, Tagmatarchis N, Prato M (2006) Fullerenes and their derivatives. In: Gogotsi Y (ed) Carbon Nanomaterial. Taylor & Francis, London, pp 1–39Google Scholar
  23. McConnell H, Radhakrishnan A (2006) Theory of the deuterium NMR of sterol- phospholipid membranes. Proc Natl Acad Sci USA 103:1184–1189PubMedCrossRefGoogle Scholar
  24. Mendelsohn R, Mantsch HH (1986) Fourier transform infrared studies of lipid-protein interaction. In: Watts A, De Pont JJHHM (eds) Progress in protein-lipid interactions. Elsevier, Amsterdam, pp 103–146Google Scholar
  25. Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. J Phys: Conf Ser 159:012003CrossRefGoogle Scholar
  26. Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST (2008) In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103:197–208PubMedCrossRefGoogle Scholar
  27. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275CrossRefGoogle Scholar
  28. Picard F, Paquet MJ, Lévesque J, Bélanger A, Auger M (1999) 31P NMR first spectral moment study of the partial magnetic orientation of phospholipid membrane. Biophys J 77:888–902PubMedCrossRefGoogle Scholar
  29. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619PubMedCrossRefGoogle Scholar
  30. Sayes C, Fortner J, Guo W, Lyon D, Boyd A, Ausman K, Tao Y, Sitharaman B, Wilson L, Hughes J, West J, Colvin V (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887CrossRefGoogle Scholar
  31. Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10:353–418PubMedCrossRefGoogle Scholar
  32. Seelig J (1978) 31P Nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta 515:105–140PubMedGoogle Scholar
  33. Seelig J, Seelig A (1980) Lipid conformation in model membranes and biological membranes. Q Rev Biophys 13:19–61PubMedCrossRefGoogle Scholar
  34. Seydel JK (2002) Function, composition, and organization of membranes. In: Seydel JK, Wiese M (eds) Drug-membrane interactions: analysis, drug distribution and modeling. Wiley, Weinheim, pp 3–33Google Scholar
  35. Smith ICP, Ekiel IH (1984) Phosphorus-31 NMR of phospholipids in membranes. In: Gorenstein DG (ed) Phosphorus-31 NMR: Principles and applications. Academic Press, London, pp 447–475Google Scholar
  36. Spurlin T, Gewirth A (2007) Effects of C60 on solid supported lipid bilayers. Nano Lett 7:531–535PubMedCrossRefGoogle Scholar
  37. van Beek JD (2007) A flexible toolbox for processing, analysing and visualizing magnetic resonance data in Matlab®. J Magn Reson 187:19–26PubMedCrossRefGoogle Scholar
  38. Vincent JS, Revak SD, Cochrane CC, Levin IW (1993) Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly: Raman spectroscopic studies. Biochemistry 32:8228–8238PubMedCrossRefGoogle Scholar
  39. Vist MR, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464PubMedCrossRefGoogle Scholar
  40. Warschawsky DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974CrossRefGoogle Scholar
  41. Wilson SR (2002) Nanomedecine: Fullerene and carbon nanotube biology. In: Osawa E (ed) Perspectives of fullerene nanotechnology. Kluwer Academic Publishers, Great Britain, Part IV, pp 155–163CrossRefGoogle Scholar
  42. Zhang YP, Lewis RN, McElhaney RN (1997) Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J 72:779–793PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • Patrick P. Brisebois
    • 1
  • Alexandre A. Arnold
    • 1
  • Yoann M. Chabre
    • 1
  • René Roy
    • 1
  • Isabelle Marcotte
    • 1
  1. 1.Department of Chemistry, Pharmaqam/NanoQAMUniversité du Québec à MontréalMontréalCanada

Personalised recommendations