European Biophysics Journal

, Volume 42, Issue 1, pp 47–59 | Cite as

Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers

  • David I. Fernandez
  • Anton P. Le Brun
  • Tzong-Hsien Lee
  • Paramjit Bansal
  • Marie-Isabel Aguilar
  • Michael James
  • Frances Separovic
Original Paper

Abstract

The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC–dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC–DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.

Keywords

Antimicrobial peptide Model membranes Peptide–lipid interaction Dual polarisation interferometry Neutron reflectometry 

Notes

Acknowledgments

MIA and FS thank the Australian Research Council (ARC) for financial support. FS would like to acknowledge the Australian Institute for Nuclear Science and Engineering (AINSE) (proposal ID: P1139) for their support and funding enabling this research. DIF thanks the Australian government for an Australian Postgraduate Award. We would like to thank Associate Professor Lisa Martin and Ms Stefania Piantavigna (Monash University) for their assistance with QCM-D. APLB acknowledges the Australian Nuclear Science and Technology Organisation (ANSTO) executive for funding.

References

  1. Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualisation of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89(3):1874–1881PubMedCrossRefGoogle Scholar
  2. Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophy J Biophys Lett 33(2):109–116. doi:10.1007/s00249-003-0342-7 CrossRefGoogle Scholar
  3. Binder H, Zschornig O (2002) The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids 115:39–61PubMedCrossRefGoogle Scholar
  4. Boland M, Separovic F (2006) Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim Biophys Acta 1758:1178–1183PubMedCrossRefGoogle Scholar
  5. Brinkworth CS, Bowie JH (2003) Negative ion electrospray mass spectra of the maculatin peptides from the tree frogs Litoria genimaculata and Litoria eucnemis. Rapid Commun Mass Spectrom 17:2215–2225PubMedCrossRefGoogle Scholar
  6. Callow P, Fragneto G, Cubitt R, Barlow DJ, Lawrence MJ, Timmins P (2005) Interaction of cationic lipid vesicles with model cell membranes as determined by neutron reflectivity. Langmuir 21(17):7912–7920. doi:10.1021/la050957l PubMedCrossRefGoogle Scholar
  7. Casillas-Ituarte NN, Chen X, Castada H, Allen HC (2010) Na+ and Ca2+ effect on the hydration and orientation of the phosphate group of DPPC at air = water and air-hydrated silica interfaces. J Phys Chem 114:9485–9495CrossRefGoogle Scholar
  8. Chia BCS, Carver J, Mulhern TD, Bowie JH (2000) Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata. Solution structure and biological activity. Eur J Biochem 267:1894–1908PubMedCrossRefGoogle Scholar
  9. Chia CSB, Torres J, Cooper MA, Arkin IT, Bowie JH (2002) The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Lett 512:47–51PubMedCrossRefGoogle Scholar
  10. Cornell BA, Separovic F (1983) Membrane thickness and acyl chain length. Biochimica et Biophysica Acta Biomemb 733(1):189–193CrossRefGoogle Scholar
  11. Costigan SC, Booth PJ, Templer RH (2000) Estimations of lipid bilayer geometry in fluid lamellar phases. Biochimica et Biophysica Acta Biomemb 1468(1–2):41–54CrossRefGoogle Scholar
  12. De Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 17(7):1759–1772CrossRefGoogle Scholar
  13. de Kroot AIPM (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochimica et Biophysica Acta Mol Cell Biol Lipids 1771(3):343–352CrossRefGoogle Scholar
  14. Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol Biosyst 5(6):580–587PubMedCrossRefGoogle Scholar
  15. Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from Australian frogs. Biochim Biophys Acta 1788:1630–1638PubMedCrossRefGoogle Scholar
  16. Fernandez DI, Sani M-A, Separovic F (2011) Interactions of the antimicrobial peptide maculatin 1.1 and analogues with phospholipid bilayers. Aust J Chem 64:798–805Google Scholar
  17. Gehman JD, Luc F, Hall K, Lee T-H, Boland MP, Pukala TL, Bowie JH, Aguilar MI, Separovic F (2008) Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Biochemistry 47(33):8557–8565. doi:10.1021/bi800320v PubMedCrossRefGoogle Scholar
  18. Gunstone FD, Harwood JL (2007) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Dijkstra AJ (eds) The Lipid Handbook. CRC Press, Boca Raton, pp 37–141Google Scholar
  19. James M, Nelson A, Brule A, Schulz JC (2006) Platypus: a time-of-flight neutron reflectometer at Australia’s new research reactor. J Neutron Res 14(2):91–108CrossRefGoogle Scholar
  20. James M, Nelson A, Holt SA, Saerbeck T, Hamilton WA, Klose F (2011) The multipurpose time-of-flight neutron reflectometer “Platypus” as Australia’s OPAL reactor. Nuclear Inst Methods Phys Res Sect A Accel Spect Detect Assoc Equip 632(1):112–123. doi:10.1016/j.nima.2010.12.075 CrossRefGoogle Scholar
  21. Johnson SJ, Bayerl TM, McDermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E (1991) Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59(2):289–294. doi:10.1016/S0006-3495(91)82222-6 PubMedCrossRefGoogle Scholar
  22. Kalb E, Frey S, Tamm LK (1992) Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochimica et Biophysica Acta (BBA) Biomemb 1103(2):307–316. doi:10.1016/0005-2736(92)90101-Q
  23. Kiessling V, Tamm LK (2003) Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys J 84(1):408–418. doi:10.1016/S0006-3495(03)74861-9 PubMedCrossRefGoogle Scholar
  24. Killian JA, de Planque MRR, van der Wel PCA, Salemink I, de Kruijff B, Greathouse DV, Koeppe RE II (1998) Modulation of membrane structure and function by hydrophobic mismatch between proteins and lipids. Pure Appl Chem 70(1):75–82CrossRefGoogle Scholar
  25. Koenig BW, Krueger S, Orts WJ, Majkrzak CF, Berk NF, Silverton JV, Gawrisch K (1996) Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal. Langmuir 12(5):1343–1350. doi:10.1021/la950580r CrossRefGoogle Scholar
  26. Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966PubMedCrossRefGoogle Scholar
  27. Krueger S (2001) Neutron reflection from interfaces with biological and biomimetic materials. Curr Opin Colloid Interf Sci 6(2):111–117CrossRefGoogle Scholar
  28. Lee T-H, Hall KN, Swann MJ, Popplewell JF, Unabia S, Park Y, Hahm K-S, Aguilar M-I (2010a) The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta 1798:544–557PubMedCrossRefGoogle Scholar
  29. Lee T-H, Heng C, Swann MJ, Gehman JD, Separovic F, Aguilar M-I (2010b) Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Biochim Biophys Acta 1798:1977–1986PubMedCrossRefGoogle Scholar
  30. Marcotte I, Wegener KL, Lam Y-H, Chia BCS, de Planque MRR, Bowie JH, Auger M, Separovic F (2003) Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem Phys Lipids 122(1–2):107–120. doi:10.1016/S0009-3084(02)00182-2 PubMedCrossRefGoogle Scholar
  31. Mashaghi A, Swann M, Popplewell J, Textor M, Reimhult E (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal Chem 80(10):3666–3676PubMedCrossRefGoogle Scholar
  32. Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide–membrane interactions revealed using quartz crystal microbalance. Biophys J 93:3907–3916PubMedCrossRefGoogle Scholar
  33. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochimica et Biophysica Acta Rev Biomemb 1469(3):159–195CrossRefGoogle Scholar
  34. Nelson A (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J Appl Crystallogr 39:273–276CrossRefGoogle Scholar
  35. Nelson A (2010) Motofit—integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package. J Phys Conf Ser 251(1):012094CrossRefGoogle Scholar
  36. Niidome T, Kobayashi K, Arakawa H, Hatakeyama T, Aoyagi H (2004) Structure-activity relationship of an antibacterial peptide, maculatin 1.1 from the skin glands of the tree frog, Littoria genimaculata. J Pept Sci 10:414–422PubMedCrossRefGoogle Scholar
  37. Oren Z, Shai Y (1999) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463CrossRefGoogle Scholar
  38. Pedersen UR, Leidy C, Westh P, Peters GH (2006) The effect of calcium on the properties of charged phospholipid bilayers. Biochim Biophys Acta 1758:573–582PubMedCrossRefGoogle Scholar
  39. Petrache HI, Tristram-Nagle S, Nagle JF (1998) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids 95(1):83–94PubMedCrossRefGoogle Scholar
  40. Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Tyler MJ, Wallace JC (1998) The maculatin peptides from the skin glands of the tree frog Littoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. J Pept Sci 4(2):111–115PubMedCrossRefGoogle Scholar
  41. Seto GWJ, Marwaha S, Kobewka DM, Lewis RNAH, Separovic F, McElhaney RN (2007) Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and fourier transform infrared spectroscopic studies. Biochim Biophys Acta 1768:2787–2800PubMedCrossRefGoogle Scholar
  42. Shai Y (1999) Mechanism of the binding, insertion and destabilisation of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane lytic peptides. Biochim Biophys Acta 1462:55–70PubMedCrossRefGoogle Scholar
  43. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236–248PubMedCrossRefGoogle Scholar
  44. Shai Y, Oren Z (2001) From “carpet” mechanism to de novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641PubMedCrossRefGoogle Scholar
  45. Terry CJ, Popplewell JF, Swann MJ, Freeman NJ, Fernig DG (2006) Characterisation of membrane mimetics on a dual polarisation interferometer. Biosens Bioelectron 22:627–632PubMedCrossRefGoogle Scholar
  46. VanCompernolle SE, Taylor RJ, Richter KO, Jiang J, Youree BE, Bowie JH, Tyler MJ, Conlon JM, Wade D, Aiken C, Dermody TS, KewelRamani VN, Rollins-Smith LA, Unutmaz D (2005) Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol 79(18):11598–11606PubMedCrossRefGoogle Scholar
  47. Wacklin HP (2010) Neutron reflection from supported lipid membranes. Curr Opin Colloid Interf Sci 15(6):445–454CrossRefGoogle Scholar
  48. Wacklin HP, Thomas RK (2007) Spontaneous formation of asymmetric lipid bilayers by adsorption of vesicles. Langmuir 23(14):7644–7651PubMedCrossRefGoogle Scholar
  49. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2012

Authors and Affiliations

  • David I. Fernandez
    • 1
  • Anton P. Le Brun
    • 2
  • Tzong-Hsien Lee
    • 3
  • Paramjit Bansal
    • 2
  • Marie-Isabel Aguilar
    • 3
  • Michael James
    • 2
    • 4
  • Frances Separovic
    • 1
  1. 1.School of Chemistry, Bio21 InstituteUniversity of MelbourneMelbourneAustralia
  2. 2.Bragg InstituteAustralian Nuclear Science and Technology OrganisationKirrawee DCAustralia
  3. 3.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
  4. 4.School of ChemistryUniversity of New South WalesKensingtonAustralia

Personalised recommendations