European Biophysics Journal

, Volume 41, Issue 4, pp 397–403 | Cite as

Acoustic levitation: recent developments and emerging opportunities in biomaterials research

  • Richard J. K. Weber
  • Chris J. Benmore
  • Sonia K. Tumber
  • Amit N. Tailor
  • Charles A. Rey
  • Lynne S. Taylor
  • Stephen R. Byrn


Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.


Amorphous Glass Containerless processing Pharmaceutical API 



This work was supported by the US DOE, at Argonne National Laboratory under contract number DE-AC02-06CH11357. We thank Dr Louis Hennet at CNRS-Orleans and Le Studium for travel assistance to participate in Cosmetics and Pharmaceutics: New Trends in Biophysical Approaches, Feb. 14–15, 2011, Orleans, France.


  1. Atassi F, Mao C, Masadeh AS, Byrn SR (2010) Solid-state characterization of amorphous and mesomorphous calcium ketoprofen. J Pharm Sci 99:3684–3697PubMedGoogle Scholar
  2. Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99:3787–3806PubMedCrossRefGoogle Scholar
  3. Barmatz M, Collas P (1985) Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J Acoust Soc Am 77:928CrossRefGoogle Scholar
  4. Benmore CJ, Weber JKR (2011) Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. PRX 1:011004Google Scholar
  5. Benmore CJ, Weber JKR, Wilding MC, Du J, Parise JB (2010) Temperature dependent structural heterogeneity in calcium silicate liquids. Phys Rev B 82:224202CrossRefGoogle Scholar
  6. Chung SK, Trinh EH (1998) Bottom of form containerless protein crystal growth in rotating levitated drops. Bottom Form 194:384–397Google Scholar
  7. de Castro MDL, Capote FP (2007) Techniques and instrumentation in analytical chemistry, analytical applications of ultrasound, vol 26. Elsevier, Amsterdam, pp 268–275Google Scholar
  8. Drewitt JWE, Jahn S, Cristiglio V, Bytchkov A, Leydier M, Brassamin S, Fischer HE, Hennet L (2011) The structure of liquid calcium aluminates as investigated using neutron and high energy X-ray diffraction in combination with molecular dynamics simulation method. J Phys Condens Matter 23:155101PubMedCrossRefGoogle Scholar
  9. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235CrossRefGoogle Scholar
  10. Hench LL, Wilson J (1993) An Introduction to bioceramics. World Scientific, Singapore, pp 139–199Google Scholar
  11. Kawakami K (2009) Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases. J Pharm Sci 98:2875PubMedCrossRefGoogle Scholar
  12. Knutsson M (2006) Acoustic levitation—optimization of instrumental parameters of the levmac instrument for protein crystallization application, bachelor’s thesis, LTH School of Engineering, Lund University, Helsingborg, SwedenGoogle Scholar
  13. Kohara S, Suzuya K, Takeuchi K, Loong C-K, Grimsditch M, Weber JKR, Tangeman JA, Key TS (2004) Glass formation at the limits of insufficient network formers. Science 303:1649PubMedCrossRefGoogle Scholar
  14. Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, Krill SL (2004) Ritonavir–PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 93:563PubMedCrossRefGoogle Scholar
  15. Leiterer J, Grabolle M, Rurack K, Resch-Genger U, Ziegler J, Nann T, Panne U (2008a) Acoustically levitated droplets: a contactless sampling method for fluorescence studies. Ann NY Acad Sci 1130:78–84PubMedCrossRefGoogle Scholar
  16. Leiterer J, Delissen F, Emmerling F, Thunemann AF, Panne U (2008b) Structure analysis using acoustically levitated droplets. Anal Bioanal Chem 391:1221PubMedCrossRefGoogle Scholar
  17. Lierke EG, Grossenbach R, Flogel K, Clancy P (1983) In: McAvoy BR (ed) IEEE Proceedings on Ultrasonics, vol 2. IEEE, New York, pp 1130–1139Google Scholar
  18. Lorch EA (1969) Neutron diffraction by germania, silica and radiation-damaged silica glasses. J Phys C Solid State Phys 2:229CrossRefGoogle Scholar
  19. Lu J, Rohani S (2009) Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Current Med Chem 16:884CrossRefGoogle Scholar
  20. Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S-H, Stanley HE (2010) Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc Natl Acad Sci 107:22457–22462PubMedCrossRefGoogle Scholar
  21. Nagapudi K, Jona J (2008) Amorphous active pharmaceutical ingredients in preclinical studies: preparation, characterization, and formulation. Curr Bioact Comp 4:213–224CrossRefGoogle Scholar
  22. Neuefeind J, Benmore CJ, Weber JKR, Paschek D (2011) More accurate X-ray scattering data of deeply supercooled bulk liquid water. Mol Phys 109:279–288CrossRefGoogle Scholar
  23. Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176PubMedCrossRefGoogle Scholar
  24. Price DL (2010) High-temperature levitated materials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Puskar L, Tuckermann R, Frosch T, Popp J, Ly V, McNaughton D, Wood BR (2007) Raman acoustic levitation spectroscopy of red blood cells and plasmodium falciparum trophozoites. Lab Chip 9:1125–1131CrossRefGoogle Scholar
  26. Qiu XY, Thompson JW, Billinge SJL (2004) PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Cryst 37:678CrossRefGoogle Scholar
  27. Rey CA, Merkley DR, Hammarlund GR, Danley TJ (1987) Acoustic levitation technique for containerless processing at high temperatures in space. J Acoust Soc Am 82:106CrossRefGoogle Scholar
  28. Rindone GE (ed) (1982) Materials processing in the reduced gravity environment of space, MRS Symposium Proceedings, vol 9. Elsevier, New YorkGoogle Scholar
  29. Santesson S, Cedergren-Zeppezauer ES, Johansson T, Laurell T, Nilsson J, Nilsson S (2003) Screening of nucleation conditions using levitated drops for protein crystallization. Anal Chem 75:1733–1740PubMedCrossRefGoogle Scholar
  30. Shahrokhi F, Hazelrigg GA, Bayuzick RJ (1990) Space commercialization: platforms and processing, progress in astronautics and aeronautics, vol 127. AIAA Inc., Washington DC, pp 179–201Google Scholar
  31. Trinh EH (1985) Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev Sci Instrum 56:2059CrossRefGoogle Scholar
  32. Weber JKR, Rey CA, Neuefeind J, Benmore CJ (2009) Acoustic levitator for structure measurements on low temperature liquid droplets. Rev Sci Instrum 80:083904PubMedCrossRefGoogle Scholar
  33. Whymark RR (1975) Acoustic field positioning for containerless processing. Ultrasonics 13:251CrossRefGoogle Scholar
  34. Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5:905PubMedCrossRefGoogle Scholar
  35. Willart JF, Dujardin N, Dudognon E, Danède F, Descamps M (2010) Amorphization of sugar hydrates upon milling. Carbohydr Res 345:1613PubMedCrossRefGoogle Scholar
  36. Xie WJ, Wei B (2001) Dependence of acoustic levitation capabilities on geometric parameters. Appl Phys Lett 79:881CrossRefGoogle Scholar
  37. Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Richard J. K. Weber
    • 1
    • 2
  • Chris J. Benmore
    • 2
  • Sonia K. Tumber
    • 1
  • Amit N. Tailor
    • 1
  • Charles A. Rey
    • 3
  • Lynne S. Taylor
    • 4
  • Stephen R. Byrn
    • 4
  1. 1.Materials Development, Inc.Arlington HeightsUSA
  2. 2.Advanced Photon Source, Argonne National LaboratoryArgonneUSA
  3. 3.Charles Rey, Inc.Lake ZurichUSA
  4. 4.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA

Personalised recommendations