European Biophysics Journal

, Volume 41, Issue 1, pp 79–87 | Cite as

Depth-sensing analysis of cytoskeleton organization based on AFM data

  • Katarzyna Pogoda
  • Justyna Jaczewska
  • Joanna Wiltowska-Zuber
  • Olesya Klymenko
  • Kazimierz Zuber
  • Maria Fornal
  • Małgorzata LekkaEmail author
Original Paper


Atomic force microscopy is a common technique used to determine the elastic properties of living cells. It furnishes the relative Young’s modulus, which is typically determined for indentation depths within the range 300–500 nm. Here, we present the results of depth-sensing analysis of the mechanical properties of living fibroblasts measured under physiological conditions. Distributions of the Young’s moduli were obtained for all studied cells and for every cell. The results show that for small indentation depths, histograms of the relative values of the Young’s modulus described the regions rich in the network of actin filaments. For large indentation depths, the overall stiffness of a whole cell was obtained, which was accompanied by a decrease of the modulus value. In conclusion, the results enable us to describe the non-homogeneity of the cell cytoskeleton, particularly, its contribution linked to actin filaments located beneath the cell membrane. Preliminary results showing a potential application to improve the detection of cancerous cells, have been presented for melanoma cell lines.


Cell biomechanics Atomic force microscopy Depth-sensing analysis Cell cytoskeleton 



Atomic force microscopy


Minimum essential medium


Ethylenediaminetetraacetic acid


Phosphate-buffered saline


Full width of the distribution taken at half height



This work was partially supported by the project SMW (Single Molecule Workstation), grant agreement number 213717 (NMP4-SE-2008-213717), and by the projects of the Polish Ministry of Science and Higher Education numbers: N-N202-285738 (O.K.) and N-N402-47133 (M.F.).


  1. Canadas P, Laurent V, Oddou C, Isabey D, Wendling S (2002) A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J Theor Biol 218:155–173PubMedCrossRefGoogle Scholar
  2. Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19:384003PubMedCrossRefGoogle Scholar
  3. Cuerrier CM, Gagner A, Lebel R, Gobeil F, Grandbois M (2009) Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 22:389–396PubMedCrossRefGoogle Scholar
  4. DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15:572–582PubMedCrossRefGoogle Scholar
  5. Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, Kamm RD, Schmid-Schoenbein GW, Weinbaum S (2009) Biomechanics: cell research and applications for the next decade. Ann Biomed Eng 37:847–859PubMedCrossRefGoogle Scholar
  6. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteo-Ibanez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJP, Garcia R, Kelly PJ, Sanchez-Mateo P, Cukierman E, Del Pozo MA (2011) Biomechanical remodelling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163PubMedCrossRefGoogle Scholar
  7. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby S (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698PubMedCrossRefGoogle Scholar
  8. Haidle AM, Myers AG (2004) An enantioselective, modular, and general route to the cytochalasins: synthesis of L-696, 474 and cytochalasin B. Proc Natl Acad Sci 101:12048–12053PubMedCrossRefGoogle Scholar
  9. Lekka M, Laidler P (2009) Applicability of AFM in cancer detection. Nat Nanotech (correspondence) 4:72CrossRefGoogle Scholar
  10. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316PubMedCrossRefGoogle Scholar
  11. Lekka M, Laidler P, Ignacak J, Łabędź M, Lekki J, Struszczyk H, Stachura Z, Hrynkiewicz AZ (2001) The effect of chitosan on stiffness and glycolytic activity of human bladder cells. Biochim Biophys Acta 1540:127–136PubMedCrossRefGoogle Scholar
  12. Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613PubMedCrossRefGoogle Scholar
  13. Liu W, Fan Y, Deng X, Guan Z, Li N (2009) Adhesion behaviors of human trophoblast cells by contact with endothelial cells. Colloid Surf B 71:208–213CrossRefGoogle Scholar
  14. Pesen D, Hoh HJ (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679PubMedCrossRefGoogle Scholar
  15. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732PubMedCrossRefGoogle Scholar
  16. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535PubMedCrossRefGoogle Scholar
  17. Safran S, Gov N, Nicolas A, Schwarz U, Tlusty T (2005) Physics of cell elasticity, shape and adhesion. Phys A 352:171–201CrossRefGoogle Scholar
  18. Schrot S, Weidenfeller C, Schaffer TE, Robenek H, Galla HJ (2005) Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophys J 89:3904–3910PubMedCrossRefGoogle Scholar
  19. Seo Y, Jhe W (2008) Atomic force microscopy and spectroscopy. Rep Prog Phys 71:016101CrossRefGoogle Scholar
  20. Sneddon IA (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  21. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438PubMedCrossRefGoogle Scholar
  22. Wakatsuki T, Schwab B, Thompson N, Elson E (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036PubMedGoogle Scholar
  23. Weichsel J, Herold N, Lehmann MJ, Kraeusslich HG, Schwarz US (2010) A quantitative measure for alterations in the actin cytoskeleton investigated with automated high-throughput microscopy. Cytometry A 77:52–63PubMedGoogle Scholar
  24. Wu WH, Kuhn T, Moy VT (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397PubMedCrossRefGoogle Scholar
  25. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773:642–652PubMedCrossRefGoogle Scholar
  26. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem 5:65–71Google Scholar
  27. Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Katarzyna Pogoda
    • 1
  • Justyna Jaczewska
    • 1
    • 2
  • Joanna Wiltowska-Zuber
    • 1
  • Olesya Klymenko
    • 1
  • Kazimierz Zuber
    • 1
  • Maria Fornal
    • 3
  • Małgorzata Lekka
    • 1
    Email author
  1. 1.The Henryk Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  2. 2.The Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  3. 3.The Department of Internal Medicine and Gerontology, Collegium MedicumJagiellonian UniversityKrakówPoland

Personalised recommendations