Advertisement

European Biophysics Journal

, Volume 40, Issue 11, pp 1259–1270 | Cite as

Zinc modulates copper coordination mode in prion protein octa-repeat subdomains

  • Francesco Stellato
  • Ann Spevacek
  • Olivier Proux
  • Velia Minicozzi
  • Glenn Millhauser
  • Silvia MoranteEmail author
Original Paper

Abstract

In this work we present and analyse XAS measurements carried out on various portions of Prion-protein tetra-octa-repeat peptides in complexes with Cu(II) ions, both in the presence and in the absence of Zn(II). Because of the ability of the XAS technique to provide detailed local structural information, we are able to demonstrate that Zn acts by directly interacting with the peptide, in this way competing with Cu for binding with histidine. This finding suggests that metal binding competition can be important in the more general context of metal homeostasis.

Keywords

Prion protein Zinc Copper XAS spectroscopy Metal homeostasis 

Notes

Acknowledgments

We are very grateful to G.C. Rossi for useful discussions and for reading the manuscript. Partial financial support from PRIN08 is acknowledged. We thank the anonymous referees for their useful suggestions.

Supplementary material

249_2011_713_MOESM1_ESM.doc (138 kb)
Supplementary material 1 (DOC 138 kb)

References

  1. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39:13760–13771PubMedCrossRefGoogle Scholar
  2. Binsted N (1998) EXCURV98. CCLRC Daresbury Laboratory, Warrington, Cheshire, UKGoogle Scholar
  3. Binsted N, Strange RW, Hasnain SS (1992) Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochemistry 31:12117–12125PubMedCrossRefGoogle Scholar
  4. Brown ID (2010) Private communication (see also www.mrl.ucsb.edu/~seshadri/2009_218/bvparm2006.pdf)
  5. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst B4:244–247Google Scholar
  6. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41:3991–4001PubMedCrossRefGoogle Scholar
  7. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach G, Millhauser GL (2003) Copper coordination in the full-length, recombinant prion protein. Biochemistry 42:6794–6803PubMedCrossRefGoogle Scholar
  8. Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S (2001) Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein. Biophys J 81:516–525PubMedCrossRefGoogle Scholar
  9. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J Am Chem Soc 127(36):12647–12656Google Scholar
  10. D’Angelo P, Benfatto M, Della Longa S, Pavel NV (2002a) Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Phys Rev B 66:064209CrossRefGoogle Scholar
  11. D’Angelo P, Barone V, Chillemi G, Sanna N, Meyer-Klaucke W, Pavel NV (2002b) Hydrogen and higher shell contributions in Zn2+, Ni2+, and Co2+ aqueous solutions: an X-ray absorption fine structure and molecular dynamics study. J Am Chem Soc 124:1958–1967PubMedCrossRefGoogle Scholar
  12. Dominikus AL, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Güntert P, Wüthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645CrossRefGoogle Scholar
  13. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Tréguer E, Rezaei H, Knossow M (2004) Insight into the PrPC→PrP(SC) conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci USA 101:10254–10259PubMedCrossRefGoogle Scholar
  14. Ferreira GC, Franco R, Mangravita A, George GN (2002) Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study. Biochemistry 41:4809–4818PubMedCrossRefGoogle Scholar
  15. Fonda L (1992) Multiple-scattering theory of X-ray absorption: a review. J Phys Condens Matter 4:8269–8302CrossRefGoogle Scholar
  16. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB (1993) Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc Natl Acad Sci USA 90:1–5PubMedCrossRefGoogle Scholar
  17. Guerrieri F, Minicozzi V, Morante S, Rossi GC, Furlan S, La Penna G (2009) Modeling the interplay of glycine protonation and multiple histidine binding of copper in the prion protein octarepeat sub-domains. J Biol Inorg Chem 14:361–374PubMedCrossRefGoogle Scholar
  18. Hasnain SS, Murphy LM, Strange RW, Grossmann JG, Clarke AR, Jackson GD, Collinge J (2001) XAFS Study of the High-affinity Copper-binding Site of Human PrP91–231 and its low-resolution structure in solution. J Mol Biol 311:467–473PubMedCrossRefGoogle Scholar
  19. Hornshaw MP, McDermott JR, Candy JM, Lakey JH (1995) Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun 214:993–999PubMedCrossRefGoogle Scholar
  20. Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S (2008) Identifying the minimal Cu and Zn binding site sequence in amyloid beta peptides. J Biol Chem 283:10784–10792PubMedCrossRefGoogle Scholar
  21. Morante S (2008) Metal ions and protein aggregation: the case of prion protein and β-amyloids (invited review). In: Bulone D, San Biagio PL (eds) Biophysical inquiry into protein aggregation and amyloid diseases, research signpost edition. Transworld Research Network, Kerala, pp 53–110Google Scholar
  22. Morante S, González-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2004) Inter- and intra-octarepeat Cu(II) site geometries in the prion protein. Implication in Cu(II) binding cooperativity and Cu(II)-mediated assemblies. J Biol Chem 279:11753–11759PubMedCrossRefGoogle Scholar
  23. Nunziante M, Gilch S, Schatzl HM (2003) Essential rôle of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem 278:3726–3734PubMedCrossRefGoogle Scholar
  24. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of α-Helices β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966PubMedCrossRefGoogle Scholar
  25. Proux O, Biquard X, Lahera E, Menthonnex J–J, Prat A, Ulrich O, Soldo Y, Trévisson P, Kapoujvan G, Perroux G, Taunier P, Grand D, Jeantet P, Deleglise M, Roux J-P, Hazemann J-L (2005) FAME: A new beamline for X-ray absorption investigations of very-diluted systems of environmental, material and biological interests. Phys Scripta 115:970–973CrossRefGoogle Scholar
  26. Proux O, Nassif V, Prat A, Ulrich O, Lahera E, Biquard X, Menthonnex J–J, Hazemann J-L (2006) Feedback system of a liquid nitrogen cooled double-crystal monochromator: design and performances. J Synchrotron Radiat 13:59–68PubMedCrossRefGoogle Scholar
  27. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383PubMedCrossRefGoogle Scholar
  28. Qin K, Yang Y, Mastrangelo P, Westaway D (2002) Mapping Cu(II) binding sites in prion proteins by diethyl pyrocarbonate modification and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometric footprinting. J Biol Chem 277:1981–1990PubMedCrossRefGoogle Scholar
  29. Rachidi W, Mange A, Senator A, Guiraud P, Riondel J, Benboubetra M, Favier A, Lehmann S (2003) Prion infection impairs copper binding of cultured cells. J Biol Chem 278:14595–14598PubMedCrossRefGoogle Scholar
  30. Ravel B (2008) ATHENA user’s guide. http://cars9.uchicago.edu/ravel/software/exafs/
  31. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12:537–541CrossRefGoogle Scholar
  32. Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37:7185–7193PubMedCrossRefGoogle Scholar
  33. Strange RW, Alagna L, Durham P, Hasnain SS (1990) An understanding of the x-ray absorption near-edge structure of copper(II) imidazole complexes. J Am Chem Soc 112:4265–4268Google Scholar
  34. Thorp HH (1992) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Inorg Chem 31:1585–1588CrossRefGoogle Scholar
  35. Walter ED, Stevens DJ, Visconte MP, Millhauser GL (2007) The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc 129:15440–15441PubMedCrossRefGoogle Scholar
  36. Wells MA, Jelinska C, Hosszu LLP, Craven CJ, Clarke AR, Collinge J, Waltho JP, Jackson GS (2006) Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4. Biochem J 400:501–510PubMedCrossRefGoogle Scholar
  37. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci 9:332–343PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Francesco Stellato
    • 1
    • 2
  • Ann Spevacek
    • 3
  • Olivier Proux
    • 4
  • Velia Minicozzi
    • 1
  • Glenn Millhauser
    • 3
  • Silvia Morante
    • 1
    Email author
  1. 1.Dipartimento di FisicaUniversità di Roma ‘Tor Vergata’RomeItaly
  2. 2.Centre for Free-Electron Laser Science, DESYHamburgGermany
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA
  4. 4.Observatoire des Sciences de l’Univers de Grenoble, CNRS and Université Joseph FourierGrenoble Cedex 9France

Personalised recommendations