European Biophysics Journal

, Volume 40, Issue 6, pp 761–774

The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions: structure, dynamics, and enzyme activity

  • Stefan Wellert
  • Brigtte Tiersch
  • Joachim Koetz
  • André Richardt
  • Alain Lapp
  • Olaf Holderer
  • Jürgen Gäb
  • Marc-Michael Blum
  • Christoph Schulreich
  • Ralf Stehle
  • Thomas Hellweg
Original Paper

Abstract

The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris is of great interest because of its ability to catalyze the hydrolysis of highly toxic organophosphates. In this work, the enzyme structure in solution (native state) was studied by use of different scattering methods. The results are compared with those from hydrodynamic model calculations based on the DFPase crystal structure. Bicontinuous microemulsions made of sugar surfactants are discussed as host systems for the DFPase. The microemulsion remains stable in the presence of the enzyme, which is shown by means of scattering experiments. Moreover, activity assays reveal that the DFPase still has high activity in this complex reaction medium. To complement the scattering experiments cryo-SEM was also employed to study the microemulsion structure.

Keywords

Dynamic light scattering Neutron spin echo Microemulsion Enzyme catalysis SANS Protein structure 

References

  1. Arriaga LR, Lopez-Montero I, Monroy F, Gil GO, Farago B, Hellweg T (2009a) Stiffening effect of cholesterol on disordered lipid phases: a combined NSE + DLS analysis of the bending elasticity of large unilamellar vesicles based on POPC. Bipohys J 96:3629–3637CrossRefGoogle Scholar
  2. Arriaga LR, Lopez-Montero I, Monroy F, Gil GO, Farago B, Hellweg T (2009b) Fluctuation dynamics of rigid vesicles: frustration of regular bulk dissipation into a sub-diffusive relaxation. Phys Rev E 80:031908CrossRefGoogle Scholar
  3. Arriaga LR, Rodriguez-Garcia R, Lopez-Montero I, Farago B, Hellweg T, Monroy F (2010) Dissipative curvature fluctuations in bilayer vesicles: coexistence of pure-bending and hybrid curvature-compression modes. Euro Phys J E 31:105–115CrossRefGoogle Scholar
  4. Aveyard R, Binks BP, Fletcher PDI, Buscall R, Davies S (1998) Surface and colloid chemistry of systems containing pure sugar surfactants. Langmuir 14:4699–4709CrossRefGoogle Scholar
  5. Baier J, Koetz J, Kosmella S, Tiersch B, Rehage H (2007) Polyelectrolyte-modified inverse microemulsions and their use as templates for the formation of magnetite nanoparticles. J Phys Chem B 111(29):8612–8618PubMedCrossRefGoogle Scholar
  6. Bargeron CB (1974) Measurement of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants. J Chem Phys 61(5):2134–2138CrossRefGoogle Scholar
  7. Biehl R, Hoffmann B, Monkenbusch M, Falus P, Prevost S, Merkel R, Richter D (2008) Direct observation of correlated interdomain motion in alcohol dehydrogenase. Phys Rev Lett 101:138102-1–138102-4CrossRefGoogle Scholar
  8. Biswas R, Das AR, Pradhan T, Touraud D, Kunz W, Mahiuddin S (2008) Spectroscopic studies of catanionic reverse microemulsion: correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment. J Phys Chem B 112(21):6620–6628PubMedCrossRefGoogle Scholar
  9. Blum MM, Löhr F, Richardt A, Rüterjans H, Chen JCH (2006) Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism. J Am Chem Soc 128:12750–12757PubMedCrossRefGoogle Scholar
  10. Blum MM, Mustyakimov M, Rüterjans H, Kehe K, Schoenborn BP, Langan P, Chen JCH (2009) Rapid determination of hydrogen positions and protonation states of diisopropyl fluorophosphatase by joint neutron and X-Ray diffraction refinement. PNAS 106:713–718PubMedCrossRefGoogle Scholar
  11. Brûlet A, Lairez D, Lapp A, Cotton JP (2007) Improvement of data treatment in small-angle neutron scattering. J Appl Cryst 40:165–177CrossRefGoogle Scholar
  12. Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJE (2005) Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy. PNAS 102(49):17646–17651PubMedCrossRefGoogle Scholar
  13. Burauer S, Sachert T, Sottmann T, Strey R (1999) On microemulsion phase behavior and monomeric solubility of surfactant. PCCP 1:4299–4306Google Scholar
  14. Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Progr Colloid Polymer Sci 80:151–163CrossRefGoogle Scholar
  15. Carnahan NF, Starling KE (1969) Equation of state for noninteracting rigid spheres. J Chem Phys 51(2):635–636CrossRefGoogle Scholar
  16. Coeur CL, Longeville S (2008) Microscopic protein diffusion at high concentration by neutron spin-echo spectroscopy. Chem Phys 345:298–304CrossRefGoogle Scholar
  17. Cotton JP (1991) Initial data treatment. In: Lindner P, Zemb T (eds), Neutron, X-ray and light scattering. Elsevier Science Publishers B.V.Google Scholar
  18. Doster W, Longeville S (2007) Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells. Biophys J 93:1360–1368PubMedCrossRefGoogle Scholar
  19. Endo H, Mihailescu M, Monkenbusch M, Allgaier J, Gompper G, Richter D, Jakobs B, Strey R, Grillo I (2001) Effect of amphiphilic block copolymers on the structure and phase behavior of oil-water-surfactant mixtures. J Chem Phys 115(1):580–600CrossRefGoogle Scholar
  20. Farago B, Gradzielski M (2001) The effect of the charge density of microemulsion droplets on the bending elasticity of their amphiphilic film. J Chem Phys 114(22):10105–10122CrossRefGoogle Scholar
  21. Farago B, Richter D, Huang JS, Safran SA, Milner ST (1990) Shape and size fluctuations of microemulsion droplets: the role of cosurfactant. Phys Rev Lett 65(26):3348–3351PubMedCrossRefGoogle Scholar
  22. Farago B, Monkenbusch M, Goecking KD, Richter D, Huang JS (1995) Dynamics of microemulsions as seen by neutron spin echo. Physica B 213 & 214:712–717CrossRefGoogle Scholar
  23. Gäb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum MM (2010) Monitoring the hydrolysis of toxic organo-phosphates and -phosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by 1D 1H-31P-HSQC NMR spectroscopy in aqueous solution and bicontinuous microemulsions. Anal Bioanal Chem 396:1213–1221PubMedCrossRefGoogle Scholar
  24. Garcia Bernal JM, Garcia de la Torre J (1980) Transport properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes. Biopolymers 19:751–766CrossRefGoogle Scholar
  25. Garcia de la Torre J, Bloomfield VA (1977) Hydrodynamic properties of macromolecular complexes. 1. Translation. Biopolymers 16:1747–1763CrossRefGoogle Scholar
  26. Garcia de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex, rigid biological macromolecules: Theory and application. Quarterly Rev Biophys 14:81–139CrossRefGoogle Scholar
  27. Garcia de la Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78(2):719–730PubMedCrossRefGoogle Scholar
  28. Glatter O, Orthaber D, Stradner A, Scherf G, Fanun M, Garti N, Clement V, Leser ME (2001) Sugar-ester nonionic microemulsion: structural characterization. J Coll Inter Sci 241:215–225CrossRefGoogle Scholar
  29. Hartleib J, Rüterjans H (2001) High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris. Prot Expr Purif 21(1):210–219CrossRefGoogle Scholar
  30. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforschung 28c:693–703Google Scholar
  31. Hellweg T (2002) Phase structures of microemulsions. Curr Opin Colloid Interface Sci 7:50–56CrossRefGoogle Scholar
  32. Hellweg T, von Klitzing R (2000) Structural changes and complex dynamics in the single phase region of a dodecane/C12E5/Water microemulsion: a dynamic light scattering study. Physica A 283(3–4):349–358CrossRefGoogle Scholar
  33. Hellweg T, Hinssen H, Eimer W (1993) A dynamic light scattering study on the two proteolytic fragments of gelsolin. Biophys J 65:799–805PubMedCrossRefGoogle Scholar
  34. Hellweg T, Eimer W, Krahn E, Schneider K, Müller A (1997) Hydrodynamic properties of nitrogenase–the MoFe protein from Azotobacter vinelandii studied by dynamic light scattering and hydrodynamic modelling. Biochim Biophys Acta 1337:311–318PubMedCrossRefGoogle Scholar
  35. Hellweg T, Brûlet A, Sottmann T (2000) Dynamics in an oil-continuous droplet microemulsions as seen by quasielastic scattering techniques. Phys Chem Chem Phys 2(22):5168–5174CrossRefGoogle Scholar
  36. Hellweg T, Gradzielski M, Farago B, Langevin D (2001) Shape fluctuation of microemulsion droplets: a neutron spin-echo study. Colloids Surfaces A 183–185:159–169CrossRefGoogle Scholar
  37. Hirai M, Hirai RK, Iwase H, Arai S, Mitsuya S, Takeda T, Seto H, Nagao M (1999) Dynamics of w/o AOT microemulsion studied by neutron spin echo. J Phys Chem Solids 60(8–9):1359–1361CrossRefGoogle Scholar
  38. Hirai M, Hirai RK, Iwase v, Hayakawa T, Kawabata Y, Takeda T (2002) Effect of proteins on dynamics of water-in-oil AOT microemulsion. Appl Phys A 74:S1254–S1256CrossRefGoogle Scholar
  39. Holderer O, Frielinghaus H, Byelov D, Monkenbusch M, Allgaier J, Richter D (2005) Dynamic properties of microemulsins modified with homopolymers and diblock copolymers: the determination of bending moduli and renormalization effects. J Chem Phys 122:094908/1–094908/8CrossRefGoogle Scholar
  40. Holmberg K (2001) Natural surfactants. Curr Opin Colloid Interface Sci 6:148–159CrossRefGoogle Scholar
  41. Hoskin FCG (1971) Diisopropylphosphorofluoridate and tabun: enzymatic hydrolysis and nerve function. Sci Agric 172:1243–1245Google Scholar
  42. Hoskin FCG, Roush AH (1982) Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Sci Agric 215:1255–1257Google Scholar
  43. Huang JS, Milner ST, Farago B, Richter D (1987) Study of dynamics of microemulsion droplets by neutron spin-echo spectroscopy. Phys Rev Lett 59(22):2600–2603PubMedCrossRefGoogle Scholar
  44. Iwanaga T, Suzuki M, Kunieda H (1998) Effect of added salts or polyols on the liquid crystalline structures of polyoxyethylene-type nonionic surfactants. Langmuir 14:5775–5781CrossRefGoogle Scholar
  45. Jahn W, Strey R (1988) Microstructure of microemulsions by freeze-fracture electron-microscopy. J Phys Chem 92:2294–2301, Keine KopieGoogle Scholar
  46. Kahlweit M et al (1987) How to study microemulsions. J Colloid Interface Sci 118(2):436–453CrossRefGoogle Scholar
  47. Kahlweit M, Strey R (1985) Phasenverhalten ternärer Systeme des Typs H2O-Öl-nichtionisches Amphiphil (Mikroemulsionen). Angew Chem 97:655–669CrossRefGoogle Scholar
  48. Kawabata Y, Seto H, Nagao M, Takeda T (2007) Pressure effects on bending elasticities of surfactant monolayers in a ternary microemulsion composed of aerosol-OT/D2O/decane. J Chem Phys 127:044705-1–044705-9CrossRefGoogle Scholar
  49. Kirkwood JG (1949) The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Recueil Trav Chim 68:649–660CrossRefGoogle Scholar
  50. Koeper I, Bellissent-Funel MC (2000) Hindered protein dynamics in the presence of a cryoprotecting agent. Appl Phys A 74:S1257–S1259CrossRefGoogle Scholar
  51. Koepke J, Scharff EI, Lücke C (2003) Statistical analysis of crystallographic data obtained from squid ganglion DFPase at 0.85 Å resolution. Acta Crystallographica D 59:1744–1754Google Scholar
  52. Kohlbrecher J (2008) SASfit: A program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, CH-5232 Villigen, SwitzerlandGoogle Scholar
  53. Komves C, Osborne D, Russell AJ (1994) Degredation of pesticides in a contiuous-flow 2-phase microemulsion reactor. Biotechnol Prog 10(3):340–343CrossRefGoogle Scholar
  54. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820CrossRefGoogle Scholar
  55. Larsson KM, Adlercreutz P, Mattiasson B, Olsson U (1991) Enzyme catalysis in uni- and bi-continuous microemulsions: dependence of kinetics on substrate partitioning. J Chem Soc Faraday Trans 87:465–471CrossRefGoogle Scholar
  56. Lee KM, Biellmann JF (1987) Enzyme and organic solvents: horse liver alcohol dehydrogenase in non-ionic microemulsion: stability and activity. FEBS Lett 223(1):33–36PubMedCrossRefGoogle Scholar
  57. Lutter S, Koetz J, Tiersch B, Kosmella S (2009) Polymer-modified bicontinuous microemulsions used as a template for the formation of nanorods. J Dispersion Sci Technol 30:745–752CrossRefGoogle Scholar
  58. Mihailescu M, Monkenbusch M, Endo H, Allgaier J, Gompper G, Richter D, Jakobs B, Sottmann T, Farago B (2001) Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers. J Chem Phys 115(20):9563–9577CrossRefGoogle Scholar
  59. Milner ST, Safran SA (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36(9):4371–4379PubMedCrossRefGoogle Scholar
  60. Möller A, Lang P, Findenegg GH, Keiderling U (1998) Location of butanol in mixed micelles with alkyl glucosides studied by SANS. J Phys Chem B 102(45):8958–8964CrossRefGoogle Scholar
  61. Monkenbusch M (1997) The Jülich neutron spin echo spectrometer. Neutron News 8(1):25CrossRefGoogle Scholar
  62. Monkenbusch M, Schatzler R, Richter D (1997) The Julich neutron spin-echo spectrometer–design and performanc. Nucl Instrum Methods Phys Res Sect A 399(2–3):301–323CrossRefGoogle Scholar
  63. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-square fitting. Adv Coll Inter Sci 70:171–210CrossRefGoogle Scholar
  64. Provencher SW (1982a) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Com 27:213–217CrossRefGoogle Scholar
  65. Provencher SW (1982b) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Com 27:229–242CrossRefGoogle Scholar
  66. Richardt A, Blum MM (2008) Decontamination of Warfare Agents Wiley-VCH, Weinheim ISBN-10:3-527-31756-2Google Scholar
  67. Riseman J, Kirkwood JG (1950) The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules in solution. J Chem Phys 18(4):512–516CrossRefGoogle Scholar
  68. Rojas O, Koetz J, Kosmella S, Tiersch B, Kramer M, Wacker P (2009) Structural studies of ionic liquid-modified microemulsions. J Coll Interf Sci 33:782–790CrossRefGoogle Scholar
  69. Safran SA (1999) Curvature elasticity of thin films. Adv Phys 48(4):395–448 ReviewGoogle Scholar
  70. Scharff EI, Koepke J, Fritzsch G, Lücke C, Rüterjans H (2001) Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure 9:493–502PubMedCrossRefGoogle Scholar
  71. Sottmann T, Strey R (1997) Ultralow interfacial tensions in water-n-alkane-surfactant systems. J Chem Phys 106(20):8606–8615CrossRefGoogle Scholar
  72. Stamatis H, Xenakis A, Kolisis FN (1999) Bioorganic reactions in microemulsions: the case of lipases. Biotechnl Adv 17:293–318CrossRefGoogle Scholar
  73. Stradner A, Glatter O, Schurtenberger P (2000) A hexanol-induced sphere-toflexible cylinder transition in aqueous alkyl polyglucoside solutions. Langmuir 16(12):5354–5364CrossRefGoogle Scholar
  74. Strey R (1994) Microemulsion microstructure and interfacial curvature. Coll Polymer Sci 272:1005–1019CrossRefGoogle Scholar
  75. Strey R (1996) Phase behavior and interfacial curvature in water-oil-surfactant systems. Curr Opin Colloid Interface Sci 1:402–410CrossRefGoogle Scholar
  76. Stubenrauch C (2001) Sugar surfactants–aggregation, interfacial, and adsorption phenomena. Curr Opin Colloid Interface Sci 6:160–170CrossRefGoogle Scholar
  77. Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87(5):3195–3200CrossRefGoogle Scholar
  78. Wellert S, Karg M, Imhof H, Steppin A, Altmann HJ, Dolle M, Richardt A, Tiersch B, Koetz J, Lapp A, Hellweg T (2008) Structure of Biodiesel based bicontinuous microemulsions for environmentally compatible decontamination as seen by small angle neutron scattering and freeze fracture electron microscopy. J Colloid Interf Sci 325:250–258CrossRefGoogle Scholar
  79. Wood K, Caronna C, Fouquet P, Häussler W, Natali F, Ollivier J, Orecchini A, Plazanet M, Zaccai G (2008) A benchmark for protein dynamics: Ribonuclease as measured by neutron scattering in a large wavevector-energy transfer range. Chem Phys 345:305–314CrossRefGoogle Scholar
  80. Zilman AG, Granek R (1996) Undulations and dynamic structure factor of membranes. Phys Rev Lett 77:4788–4791PubMedCrossRefGoogle Scholar
  81. Zouni A, Kern J, Frank J, Hellweg T, Behlke J, Saenger W, Irrgang KD (2005) Size determination of cyanobacterial and higher plant photosystem II by gel permeation chromatography, light scattering, and ultracentrifugation. Biochem 44(11):4572–4581CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Stefan Wellert
    • 1
  • Brigtte Tiersch
    • 2
  • Joachim Koetz
    • 2
  • André Richardt
    • 3
  • Alain Lapp
    • 4
  • Olaf Holderer
    • 5
  • Jürgen Gäb
    • 6
    • 9
  • Marc-Michael Blum
    • 6
    • 10
  • Christoph Schulreich
    • 8
  • Ralf Stehle
    • 7
  • Thomas Hellweg
    • 8
  1. 1.TU Berlin, Institut für ChemieStranski-Laboratorium für Physikalische und Theoretische ChemieBerlinGermany
  2. 2.Institut für ChemieUniversität PotsdamPotsdamGermany
  3. 3.Wehrwissenschaftliches Institut für Schutztechnologien–ABC-SchutzHumboldtstraßeGermany
  4. 4.Laboratoire Léon BrillouinC.E.A.-C.E.N. SaclayGif-sur-Yvette CedexFrance
  5. 5.Jülich Center for Neutron Scattering, FRM II GarchingGarchingGermany
  6. 6.Blum-Scientific ServicesHamburgGermany
  7. 7.Soft Matter und Funktionale MaterialienHelmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  8. 8.Physikalische und Biophysikalische ChemieBielefeldGermany
  9. 9.Institute of Pharmaceutical ChemistryPhillipps University MarburgMarburgGermany
  10. 10.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations