European Biophysics Journal

, Volume 40, Issue 6, pp 747–759 | Cite as

Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules

  • Jiří PokornýEmail author
  • Clarbruno Vedruccio
  • Michal Cifra
  • Ondřej Kučera
Original Paper


This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator—the core of the diagnostic device—when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.


Cancer diagnostics Bioscanner® TRIMprob™ Physical processes in cancer Biological electromagnetic field Water ordering in cells Nonlinear resonance interaction (NLRI) 



The research results presented in this paper were partly supported by grant nos. P102/10/P454, 102/08/H008, P102/11/0649, and 102/11/0649 of the Czech Science Foundation GA CR, and by the grant no. SGS10/179/OHK3/2T/13 of the Grant Agency of the Czech Technical University in Prague.


  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, New YorkGoogle Scholar
  2. Amos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 1–64Google Scholar
  3. Batyanov AP (1984) Distant optical interaction of the mitochondria through quartz. Bull Exp Biol Med 97:740–742Google Scholar
  4. Batyanov AP (1995) Correlation between mitochondria metabolism and the physical characteristics of incubation cells. In: Belousov L, Popp F-A (eds) Biophotonics. Non-equilibrium and coherent systems in biology, biophysics and biotechnology. Bioinform Services, Moscow, pp 439–446Google Scholar
  5. Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, Van Veldhoven PP, Gern U, Wolff-Hieber E, Eggermann J, Waltenberger J, Adler G, Spatz J, Seufferlein T (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biol 5:803–811PubMedCrossRefGoogle Scholar
  6. Bellorofonte C, Vedruccio C, Tombolini P, Ruoppolo M, Tubaro A (2005) Non-invasive detection of prostate cancer by electromagnetic interaction. Eur Urol 47:29–37, discussion 37PubMedCrossRefGoogle Scholar
  7. Bibbo M (1997) Comprehensive cytopathology. WB Saunders, PhiladelphiaGoogle Scholar
  8. Bonnet S, Archer S, Allalunis-Turner J, Haromy A, Ch B, Thompson R, Lee C, Lopaschuk G, Puttagunta L, Harry G, Hashimoto K, Porter C, Andrade M, Thebaud B, Michelakis E (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51PubMedCrossRefGoogle Scholar
  9. Booth F (1951) The dielectric constant of water and the saturation effect. J Chem Phys 19:391CrossRefGoogle Scholar
  10. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662 (special issue devoted to the mitochondria in cancer)PubMedCrossRefGoogle Scholar
  11. Brenan KE, Campbell SL, Campbell SLV, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial Mathematics, PhiladelphiaGoogle Scholar
  12. Cadenas E, Boveris A, Chance B (1980) Low-level chemiluminescence of bovine heart submitochondrial particles. Biochem J 186:659–667PubMedGoogle Scholar
  13. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:9–20PubMedCrossRefGoogle Scholar
  14. Chai B, Zheng J, Zhao Q, Pollack G (2008) Spectroscopic studies of solutes in aqueous solution. J Phys Chem A 112:2242–2247PubMedCrossRefGoogle Scholar
  15. Chai B, Yoo H, Pollack G (2009) Effect of radiant energy on near-surface water. J Phys Chem B 113:13953–13958PubMedCrossRefGoogle Scholar
  16. Cifra M, Pokorny J, Havelka D, Kucera O (2010) Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems 100:122–131PubMedCrossRefGoogle Scholar
  17. Cuezva JM, Krajewska M, López de Heredia M, Krajewski S, Santamaria G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed J (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681PubMedGoogle Scholar
  18. Da Pozzo L, Scattoni V, Mazzoccoli B, Rigatti P, Manferrari F, Martorana G, Pietropaolo F, Belgrano E, Prezioso D, Lotti T, Villari D, Nicita G (2007) Tissue-resonance interaction method for the noninvasive diagnosis of prostate cancer: analysis of a multicentre clinical evaluation. BJU Int 100:1055–1059PubMedGoogle Scholar
  19. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153PubMedCrossRefGoogle Scholar
  20. De Cicco C, Mariani L, Vedruccio C, Ricci C, Balma M, Rotmensz N, Ferrari ME, Autino E, Trifirò G, Sacchini V, Viale G, Paganelli G (2006) Clinical application of spectral electromagnetic interaction in breast cancer: diagnostic results of a pilot study. Tumori 92:207–212PubMedGoogle Scholar
  21. Del Giudice E, Tedeschi A (2009) Water and autocatalysis in living matter. Electromagn Biol Med 28:46–52PubMedCrossRefGoogle Scholar
  22. Del Giudice E, Elia V, Tedeschi A (2009) The role of water in the living organisms. Neural Netw World 19:355–360Google Scholar
  23. Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Comput Appl Math 6:19–26CrossRefGoogle Scholar
  24. Duncan-Hewitt W, Thompson M (1992) Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure. Anal Chem 64:94–105CrossRefGoogle Scholar
  25. Ferrante F, Kipling A, Thompson M (1994) Molecular slip at the solid-liquid interface of an acoustic-wave sensor. J Appl Phys 76:3448–3462CrossRefGoogle Scholar
  26. Foster KR, Baisch JW (2000) Viscous damping of vibrations in microtubules. J Biol Phys 26:255–260CrossRefGoogle Scholar
  27. Foster KR, Lukaski HC (1997) Whole-body impedance—what does it measure? Am J Clin Nutr 64:388S–396SGoogle Scholar
  28. Fröhlich H (1968a) Bose condensation of strongly excited longitudinal electric modes. Phys Lett A 26:402–403CrossRefGoogle Scholar
  29. Fröhlich H (1968b) Long-range coherence and energy storage in biological systems. Int J Quant Chem II:641–649CrossRefGoogle Scholar
  30. Fröhlich H (1969) Quantum mechanical concepts in biology. In: Marois M (ed) Theoretical physics and biology. North Holland, Amsterdam, pp 13–22Google Scholar
  31. Fröhlich H (1973) Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems). J Collect Phenom 1:101–109Google Scholar
  32. Fröhlich H (1978) Coherent electric vibrations in biological systems and cancer problem. IEEE Trans MTT 26:613–617CrossRefGoogle Scholar
  33. Fröhlich H (1980) The biological effects of microwaves and related questions. In: Marton L, Marton C (eds) Advances in electronics and electron physics, vol 53. Academic Press, New York, pp 85–152Google Scholar
  34. Fuchs EC, Woisetschlager J, Gatterer K, Maier E, Pecnik R, Holler G, Eisenkolbl H (2007) The floating water bridge. J Phys D Appl Phys 40:6112–6114CrossRefGoogle Scholar
  35. Fuchs EC, Gatterer K, Holler G, Woisetschlager J (2008) Dynamics of the floating water bridge. J Phys D Appl Phys 41:185502-1–185502-5CrossRefGoogle Scholar
  36. Fuchs EC, Bitschnau B, Woisetschlager J, Maier E, Beuneu B, Teixeira J (2009) Neutron scattering of a floating heavy water bridge. J Phys D Appl Phys 42:065502-1–065502-4CrossRefGoogle Scholar
  37. Fukuma T (2010) Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Sci Technol Adv Mater 11:033003CrossRefGoogle Scholar
  38. Gervino G, Autino E, Kolomoets E, Leucci G, Balma M (2007) Diagnosis of bladder cancer at 465 MHz. Electromagn Biol Med 26:119–134PubMedCrossRefGoogle Scholar
  39. Giuliani L, D’Emilia E, Lisi A, Grimaldi S, Foletti A, Del Giudice E (2009) The floating water bridge under strong electric potential. Neural Netw World 19:393–398Google Scholar
  40. Gokce O, Sanli O, Salmaslioglu A, Tunaci A, Ozsoy C, Ozcan F (2009) Tissue resonance interaction method (TRIMprob) has the potential to be used alongside the recognized tests in the screening protocols for prostate cancer. Int J Urol 16:580–583PubMedCrossRefGoogle Scholar
  41. Hameroff S, Lindsay S, Bruchmann T, Scott A (1986) Acoustic modes of microtubules. Biophys J 49(2 Pt 2):58aGoogle Scholar
  42. Hayward G, Thompson M (1998) A transverse shear model of a piezoelectric chemical sensor. J Appl Phys 83:2194–2201CrossRefGoogle Scholar
  43. Hayward S, Kitao A, Hirata F (1993) Effect of solvent on collective motions in globular protein. J Mol Biol 234(4):1207–1217PubMedCrossRefGoogle Scholar
  44. Hideg È (1993) On the spontaneous ultraweak light emission of plants. J Photochem Photobiol B Biol 18:239–244CrossRefGoogle Scholar
  45. Hideg È, Kobayashi M, Inaba H (1991) Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. Biochem Biophys Acta 1098:27–31CrossRefGoogle Scholar
  46. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, SuderlandGoogle Scholar
  47. Jandová A, Pokorný J, Kobilková J, Janoušek M, Mašata J, Trojan S, Nedbalová M, Dohnalová A, Beková A, Slavík V, Čoček A, Sanitrák J (2009a) Cell-mediated immunity in cervical cancer evolution. Electromagn Biol Med 28:1–14PubMedCrossRefGoogle Scholar
  48. Jandová A, Pokorný J, Kobilková J, Trojan S, Nedbalová M, Dohnalová A, Čoček A, Mašata J, Holaj R, Tvrzická E, Zvolský P, Dvořáková M, Cifra M (2009b) Mitochondrial dysfunction. Neural Netw World 19:379–391Google Scholar
  49. Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H (2010) Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 132:194705PubMedCrossRefGoogle Scholar
  50. Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K-I, Kato H, Inaba H (1999) In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci Res 34:103–113PubMedCrossRefGoogle Scholar
  51. Kobilková J, Pokorný J, Jandová A, Mašata J (2010) Changes of morphologic and surface properties of cancer cells observed by cytology and histology depend on mitochondrial dysfunction. Acta Cytol 54(3 Supp):477Google Scholar
  52. Kučera O, Cifra M, Pokorný J (2010) Technical aspects of measurement of cellular electromagnetic field. Eur Biophys J 39(10):1465PubMedCrossRefGoogle Scholar
  53. Ling G (2006) A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules. Physiol Chem Phys Med NMR 35:91–130Google Scholar
  54. Liu T-M, Chen H-P, Yeh S-CH, Wu CH-Y, Wang CH-H, Luo T-N, Chen Y-J, Liu S-I, Sun CH-K (2009) Effects of hydration levels on the bandwith of microwave resonant absorption induced by confined acoustic vibrations. Appl Phys Lett 95:173702CrossRefGoogle Scholar
  55. López-Beltrán E, Maté M, Cerdán S (1996) Dynamics and environment of mitochondrial water as detected by 1H NMR. J Biol Chem 271(18):10648PubMedCrossRefGoogle Scholar
  56. McKemmish LK, Reimers JR, McKenzie RH, Mark AE, Hush NS (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys Rev E 80:021912-1–021912-6CrossRefGoogle Scholar
  57. Mitrofanov V, Romanovsky Y, Netrebko A (2006) On the damping of the fluctuations of atomic groups in water environment. Fluct Noise Lett 6(2):L133–L145CrossRefGoogle Scholar
  58. Pedersen PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222PubMedCrossRefGoogle Scholar
  59. Pizzi R, Strini G, Fiorentini S, Pappalardo V, Pregnolato M (2011) Artificial neural networks. Nova Science, New YorkGoogle Scholar
  60. Pokorný J (2001) Endogenous electromagnetic forces in living cells: implications for transfer of reaction components. Electro-Magnetobiol 20:59–73Google Scholar
  61. Pokorný J (2003) Viscous effects on polar vibrations in microtubules. Electromagn Biol Med 22:15–29CrossRefGoogle Scholar
  62. Pokorný J (2004) Excitation of vibration in microtubules in living cells. Bioelectrochem 63:321–326CrossRefGoogle Scholar
  63. Pokorný J (2006) The role of Fröhlich’s coherent excitations in cancer transformation of cells. In: Hyland GJ, Rowlands P (eds) Herbert Fröhlich, FRS: a physicist ahead of his time. The University of Liverpool, Liverpool, pp 177–207Google Scholar
  64. Pokorný J (2009a) Biophysical cancer transformation pathway. Electromagn Biol Med 28:105–123PubMedCrossRefGoogle Scholar
  65. Pokorný J (2009b) Fröhlich’s coherent vibrations in healthy and cancer cells. Neural Netw World 19:369–378Google Scholar
  66. Pokorný J, Wu T-M (1998) Biophysical aspects of coherence and biological order. Springer, HeidelbergGoogle Scholar
  67. Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R (1997) Vibrations in microtubules. J Biol Phys 23:171–179CrossRefGoogle Scholar
  68. Pokorný J, Hašek J, Jelínek F, Šaroch J, Palán B (2001) Electromagnetic activity of yeast cells in the M phase. Electro-Magnetobiol 20:371–396Google Scholar
  69. Pokorný J, Hašek J, Jelínek F (2005a) Electromagnetic field in microtubules: effects on transfer of mass particles and electrons. J Biol Phys 31:501–514CrossRefGoogle Scholar
  70. Pokorný J, Hašek J, Jelínek F (2005b) Endogenous electric field and organization of living matter. Electromagn Biol Med 24:185–197CrossRefGoogle Scholar
  71. Pokorný J, Hašek J, Vaniš J, Jelínek F (2008) Biophysical aspects of cancer—electromagnetic mechanism. Indian J Exper Biol 46:310–321Google Scholar
  72. Pollack G, Cameron I, Wheatley D (2006) Water and the cell. Springer, DordrechtCrossRefGoogle Scholar
  73. Pollack G, Figueroa X, Zhao Q (2009) Molecules, water, and radiant energy: new clues for the origin of life. Int J Molec Sci 10:1419–1429CrossRefGoogle Scholar
  74. Preparata G (1995) QED coherence in matter. World Scientific, New JerseyGoogle Scholar
  75. Qian XS, Zhang JQ, Ru CQ (2007) Wave propagation in orthotropic microtubules. J Appl Phys 101:084702-1–084702-7Google Scholar
  76. Reimers JR, McKemmish LK, McKenzie RH, Mark AE, Hush NS (2009) Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc Natl Acad Sci USA 106:4219–4224PubMedCrossRefGoogle Scholar
  77. Romanovsky Y, Netrebko A, Chikishev A (2003) Are the subglobular oscillations of protein molecules in water overdamped? Laser Phys 13(6):827–838Google Scholar
  78. Sacco R, Innaro N, Pata F, Lucisano AM, Talarico C, Aversa S (2007a) Preoperative diagnosis of incidental carcinoma in multinodular goitre by means of electromagnetic interactions. Chir Ital 59:247–251PubMedGoogle Scholar
  79. Sacco R, Sammarco G, De Vinci R, Vescio G, Scarpelli A, Lucisano AM, Pata F, Mascia E, Martines V (2007b) Relief of gastric cancer with an electromagnetic interaction system (TRIMprob) in outpatients. Chir Ital 59:823–828PubMedGoogle Scholar
  80. Satarić M, Tuszyński JA, Žakula RB (1993) Kinklike excitation as an energy transfer mechanism in microtubules. Phys Rev E48:1993–2001Google Scholar
  81. Sirenko YM, Stroscio MA, Kim KW (1996) Elastic vibrations of microtubules in a fluid. Phys Rev E 53:1003–1010CrossRefGoogle Scholar
  82. Stebbings H, Hunt C (1982) The nature of the clear zone around microtubules. Cell Tissue Res 227:609–617PubMedCrossRefGoogle Scholar
  83. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55:3989–4014CrossRefGoogle Scholar
  84. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30PubMedCrossRefGoogle Scholar
  85. Takeda M, Tanno Y, Kobayashi M, Usa M, Ohuchi N, Satomi S, Inaba H (1998) A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett 127:155–160PubMedCrossRefGoogle Scholar
  86. Tilbury R, Quickenden T (1992) Luminescence from the yeast Candida utilis and comparisons across three genera. J Biolum Chemilum 7(4):245–253CrossRefGoogle Scholar
  87. Trombitás K, Baatsen P, Schreuder J, Pollack GH (1993) Contraction-induced movements of water in single fibres of frog skeletal muscle. J Mus Res Cell Mot 14(6):573–584CrossRefGoogle Scholar
  88. Tubaro A, De Nunzio C, Trucchi A, Stoppacciaro A, Miano L (2008) The electromagnetic detection of prostatic cancer: evaluation of diagnostic accuracy. Urology 72:340–344PubMedCrossRefGoogle Scholar
  89. Tuszyński JA, Hameroff S, Satarić M, Trpisová B, Nip MLA (1995) Ferroelectric behavior in microtubule dipole lattices: implications for conformation processing, signaling and assembly/disassembly. J Theor Biol 174:371–380CrossRefGoogle Scholar
  90. Tuszyński JA, Luchko T, Portet S, Dixon JM (2005) Anisotropic elastic properties of microtubules. Eur J Phys E Soft Cond Matter 17(1):29–35CrossRefGoogle Scholar
  91. Tyner KM, Kopelman R, Philbert MA (2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys J 93:1163–1174PubMedCrossRefGoogle Scholar
  92. Van Wijk R, Schamhart DHJ (1988) Regulatory aspects of low intensity photon emission. Experientia 44:586–593Google Scholar
  93. Van Zandt LL (1986) Resonant microwave absorption by dissolved DNA. Phys Rev Lett 57(16):2085–2087PubMedCrossRefGoogle Scholar
  94. Van Zandt LL (1987) Why structured water causes sharp absorption by DNA at microwave frequencies. J Biomol Struct Dyn 4(4):569PubMedGoogle Scholar
  95. Vannelli A, Leo E, Battaglia L, Poiasina E (2009) Diagnosis of rectal cancer by electromagnetic interactions: preliminary results. Dis Colon Rectum 52:162–166PubMedCrossRefGoogle Scholar
  96. Vedruccio C, Meessen A (2004) EM cancer detection by means of non linear resonance interaction. In: Proceedings PIERS progress in electromagnetics research symposium, Pisa, March 28–31, pp 909–912Google Scholar
  97. Wang CY, Ru CQ, Mioduchowski A (2006) Vibration of microtubules as orthotropic elastic shells. Physica E 35:48–56CrossRefGoogle Scholar
  98. Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  99. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344 Google Scholar
  100. Xie A, van der Meer A, Austin R (2001) Excited-state lifetimes of far-infrared collective modes in proteins. Phys Rev Lett 88(1):18102-1–18102-4CrossRefGoogle Scholar
  101. Zheng J, Pollack G (2003) Long-range forces extending from polymer-gel surfaces. Phys Rev E 68:031408-1–031408-7Google Scholar
  102. Zheng J, Chin W, Khijniak E, Khijniak E Jr, Pollack GH (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interface Sci 127:19–27PubMedCrossRefGoogle Scholar
  103. Zimmerman S, Zimmerman AM, Fullerton GD, Luduena RF, Cameron IL (1985) Water ordering during the cell cycle: nuclear magnetic resonance studies of the sea-urchin egg. J Cell Sci 79:247–257PubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Jiří Pokorný
    • 1
    Email author
  • Clarbruno Vedruccio
    • 2
  • Michal Cifra
    • 1
  • Ondřej Kučera
    • 1
    • 3
  1. 1.Institute of Photonics and ElectronicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.COMSUBIN, Research OfficeItalian NavyLa SpeziaItaly
  3. 3.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations