European Biophysics Journal

, Volume 40, Issue 4, pp 387–397 | Cite as

Antimicrobial peptides with cell-penetrating peptide properties and vice versa

  • Katrin Splith
  • Ines NeundorfEmail author


Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.


Antimicrobial peptides Drug delivery Cell-penetrating peptides Cellular uptake mechanism 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the project FOR 630 “Biological function of organometallic compounds.”


  1. Anderson WF (1998) Human gene therapy. Nature 392(6679 Suppl):25–30PubMedGoogle Scholar
  2. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M (1992) Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA) Protein Struct Mol Enzymol 1121(1–2):130–136CrossRefGoogle Scholar
  3. Binder H, Lindblom G (2003) Charge-dependent translocation of the trojan peptide penetratin across lipid membranes. Biophys J 85(2):982–995PubMedCrossRefGoogle Scholar
  4. Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30(19):4671–4678PubMedCrossRefGoogle Scholar
  5. Boman HG (2000) Innate immunity and the normal microflora. Immunol Rev 173:5–16PubMedCrossRefGoogle Scholar
  6. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250PubMedCrossRefGoogle Scholar
  7. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268(10):7044–7054PubMedGoogle Scholar
  8. Chen C, Brock R, Luh F, Chou PJ, Larrick JW, Huang RF, Huang TH (1995) The solution structure of the active domain of cap18–a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 370(1–2):46–52PubMedCrossRefGoogle Scholar
  9. Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and hiv transactivator of transcription (tat) “Protein transduction domains” Promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278(37):35109–35114PubMedCrossRefGoogle Scholar
  10. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450PubMedGoogle Scholar
  11. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J Biol Chem 271(30):18188–18193PubMedCrossRefGoogle Scholar
  12. Deshayes S, Heitz A, Morris MC, Charnet P, Divita G, Heitz F (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide pep-1 through conformational analysis. Biochemistry 43(6):1449–1457PubMedCrossRefGoogle Scholar
  13. Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci 105(34):12128–12133PubMedCrossRefGoogle Scholar
  14. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866PubMedCrossRefGoogle Scholar
  15. Duchardt F, Ruttekolk IR, Verdurmen WPR, Lortat-Jacob H, Burck J, Hufnagel HR, Fischer R, van den Heuvel M, Lowik DWPM, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284(52):36099–36108PubMedCrossRefGoogle Scholar
  16. El-Andaloussi S, Holm T, Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11(28):3597–3611PubMedCrossRefGoogle Scholar
  17. Elmquist A, Lindgren M, Bartfai T, Langel U (2001) Ve-cadherin-derived cell-penetrating peptide, pvec, with carrier functions. Exp Cell Res 269(2):237–244PubMedCrossRefGoogle Scholar
  18. Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from australian frogs. Biochimica et Biophysica Acta (BBA) Biomembr 1788(8):1630–1638CrossRefGoogle Scholar
  19. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 6(12):2126–2142PubMedCrossRefGoogle Scholar
  20. Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265(31):18871–18874PubMedGoogle Scholar
  21. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193PubMedCrossRefGoogle Scholar
  22. Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57(10):3142–3146PubMedGoogle Scholar
  23. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62(22):2588–2598PubMedCrossRefGoogle Scholar
  24. González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(4):301.e301–301.e308CrossRefGoogle Scholar
  25. Hancock REW (1997) Peptide antibiotics. Lancet 349(9049):418–422PubMedCrossRefGoogle Scholar
  26. Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1(3):156–164PubMedCrossRefGoogle Scholar
  27. Henriques ST, Castanho MA (2004) Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Biochemistry 43(30):9716–9724PubMedCrossRefGoogle Scholar
  28. Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human hela cells is driven by membrane electrostatic potential. Biochemistry 44(30):10189–10198PubMedCrossRefGoogle Scholar
  29. Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399(1):1–7PubMedCrossRefGoogle Scholar
  30. Henzler Wildman KA, Lee D-K, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, ll-37. Biochemistry 42(21):6545–6558PubMedCrossRefGoogle Scholar
  31. Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80(2):801–811PubMedCrossRefGoogle Scholar
  32. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352PubMedCrossRefGoogle Scholar
  33. Järver P, Langel Ü (2006) Cell-penetrating peptides–a brief introduction. Biochimica et Biophysica Acta (BBA) Biomembr 175(3):260–263CrossRefGoogle Scholar
  34. Järver P, Mager I, Langel U (2010) In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci (in press)Google Scholar
  35. Jelinek R, Kolusheva S (2005) Membrane interactions of host-defense peptides studied in model systems. Curr Protein Pept Sci 6(1):103–114PubMedCrossRefGoogle Scholar
  36. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511PubMedCrossRefGoogle Scholar
  37. Jiao CY, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S (2009) Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 284(49):33957–33965PubMedCrossRefGoogle Scholar
  38. Jung HJ, Park Y, Hahm KS, Lee DG (2006) Biological activity of tat (47–58) peptide on human pathogenic fungi. Biochem Biophys Res Commun 345(1):222–228PubMedCrossRefGoogle Scholar
  39. Jung HJ, Jeong KS, Lee DG (2008) Effective antibacterial action of tat (47–58) by increased uptake into bacterial cells in the presence of trypsin. J Microbiol Biotechnol 18(5):990–996PubMedGoogle Scholar
  40. Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63(4):389–406PubMedCrossRefGoogle Scholar
  41. Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236PubMedCrossRefGoogle Scholar
  42. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001a) The antibacterial peptide pyrrhocoricin inhibits the atpase actions of dnak and prevents chaperone-assisted protein folding. Biochemistry 40(10):3016–3026PubMedCrossRefGoogle Scholar
  43. Kragol G, Otvos L Jr, Feng J, Gerhard W, Wade JD (2001b) Synthesis of a disulfide-linked octameric peptide construct carrying three different antigenic determinants. Bioorg Med Chem Lett 11(11):1417–1420PubMedCrossRefGoogle Scholar
  44. Langer M, Kratz F, Rothen-Rutishauser B, Wunderli-Allenspach H, Beck-Sickinger AG (2001) Novel peptide conjugates for tumor-specific chemotherapy. J Med Chem 44(9):1341–1348PubMedCrossRefGoogle Scholar
  45. Larrick JW, Hirata M, Shimomoura Y, Yoshida M, Zheng H, Zhong J, Wright SC (1993) Antimicrobial activity of rabbit cap18-derived peptides. Antimicrob Agents Chemother 37(12):2534–2539PubMedGoogle Scholar
  46. Lau YE, Rozek A, Scott MG, Goosney DL, Davidson DJ, Hancock RE (2005) Interaction and cellular localization of the human host defense peptide ll-37 with lung epithelial cells. Infect Immun 73(1):583–591PubMedCrossRefGoogle Scholar
  47. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738PubMedCrossRefGoogle Scholar
  48. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11(1):23–27PubMedCrossRefGoogle Scholar
  49. Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9(1):18–22PubMedCrossRefGoogle Scholar
  50. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414PubMedCrossRefGoogle Scholar
  51. Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103PubMedCrossRefGoogle Scholar
  52. Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425PubMedCrossRefGoogle Scholar
  53. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37PubMedCrossRefGoogle Scholar
  54. Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383(1–2):93–98PubMedCrossRefGoogle Scholar
  55. Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10PubMedGoogle Scholar
  56. Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34(19):6521–6526PubMedCrossRefGoogle Scholar
  57. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736PubMedCrossRefGoogle Scholar
  58. Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19(12):1173–1176PubMedCrossRefGoogle Scholar
  59. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S, Ueda K, Simpson JC, Jones AT, Sugiura Y, Futaki S (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10(6):1011–1022PubMedCrossRefGoogle Scholar
  60. Nekhotiaeva N, Elmquist A, Rajarao GK, Hallbrink M, Langel U, Good L (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18(2):394–396PubMedGoogle Scholar
  61. Neundorf I, Hoyer J, Splith K, Rennert R, Peindy N’dongo H W, Schatzschneider U (2008) Cymantrene conjugation modulates the intracellular distribution and induces high cytotoxicity of a cell-penetrating peptide. Chem Commun (Camb) (43):5604–5606Google Scholar
  62. Neundorf I, Rennert R, Hoyer J, Schramm F, Löbner K, Kitanovic I, Wölfl S (2009) Fusion of a short ha2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2(2):49–65CrossRefGoogle Scholar
  63. Nori A, Jensen KD, Tijerina M, Kopeckova P, Kopecek J (2003) Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 14(1):44–50PubMedCrossRefGoogle Scholar
  64. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1–2):127–139PubMedGoogle Scholar
  65. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide ll-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513PubMedCrossRefGoogle Scholar
  66. Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6(10):497–511PubMedCrossRefGoogle Scholar
  67. Otvos L Jr (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11(11):697–706PubMedCrossRefGoogle Scholar
  68. Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9(4):742–749PubMedCrossRefGoogle Scholar
  69. Otvos L, Cudic M, Chua BY, Deliyannis G, Jackson DC (2004) An insect antibacterial peptide-based drug delivery system. Mol Pharm 1(3):220–232PubMedCrossRefGoogle Scholar
  70. Palm C, Netzereab S, Hallbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27(7):1710–1716PubMedCrossRefGoogle Scholar
  71. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257PubMedCrossRefGoogle Scholar
  72. Pokorny A, Birkbeck TH, Almeida PF (2002) Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. Biochemistry 41(36):11044–11056PubMedCrossRefGoogle Scholar
  73. Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12(1):67–77PubMedGoogle Scholar
  74. Pooga M, Kut C, Kihlmark M, Hallbrink M, Fernaeus S, Raid R, Land T, Hallberg E, Bartfai T, Langel U (2001) Cellular translocation of proteins by transportan. FASEB J 15(8):1451–1453PubMedGoogle Scholar
  75. Powers J-PS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691PubMedCrossRefGoogle Scholar
  76. Powers JP, Tan A, Ramamoorthy A, Hancock RE (2005) Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44(47):15504–15513PubMedCrossRefGoogle Scholar
  77. Räägel H, Säälik P, Hansen M, Langel Ü, Pooga M (2009) Cpp-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release 139(2):108–117PubMedCrossRefGoogle Scholar
  78. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590PubMedCrossRefGoogle Scholar
  79. Romeo D, Skerlavaj B, Bolognesi M, Gennaro R (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 263(20):9573–9575PubMedGoogle Scholar
  80. Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J (2000) New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57(4):679–686PubMedGoogle Scholar
  81. Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, Scherrmann JM, Temsamani J (2001) Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296(1):124–131PubMedGoogle Scholar
  82. Sadler K, Eom KD, Yang JL, Dimitrova Y, Tam JP (2002) Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 41(48):14150–14157PubMedCrossRefGoogle Scholar
  83. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726PubMedCrossRefGoogle Scholar
  84. Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S, Belting M (2004) The human antimicrobial peptide ll-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 279(17):17951–17956PubMedCrossRefGoogle Scholar
  85. Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci 5(4):185–194PubMedCrossRefGoogle Scholar
  86. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236–248PubMedCrossRefGoogle Scholar
  87. Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system mpg: Implications for delivery of sirna into mammalian cells. Nucleic Acids Res 31(11):2717–2724PubMedCrossRefGoogle Scholar
  88. Skerlavaj B, Romeo D, Gennaro R (1990) Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58(11):3724–3730PubMedGoogle Scholar
  89. Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1420(1–2):23–29PubMedGoogle Scholar
  90. Splith K, Hu W, Schatzschneider U, Gust R, Ott I, Onambele LA, Prokop A, Neundorf I (2010a) Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug Chem 21(7):1288–1296PubMedCrossRefGoogle Scholar
  91. Splith K, Neundorf I, Hu W, N’Dongo HWP, Vasylyeva V, Merz K, Schatzschneider U (2010b) Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive cpmn(co)3 peptide conjugates. Dalton Trans 39(10):2536–2545PubMedCrossRefGoogle Scholar
  92. Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41(8):1738–1742PubMedGoogle Scholar
  93. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246–248PubMedCrossRefGoogle Scholar
  94. Steiner V, Schar M, Bornsen KO, Mutter M (1991) Retention behaviour of a template-assembled synthetic protein and its amphiphilic building blocks on reversed-phase columns. J Chromatogr 586(1):43–50PubMedCrossRefGoogle Scholar
  95. Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315PubMedCrossRefGoogle Scholar
  96. Tani A, Lee S, Oishi O, Aoyagi H, Ohno M (1995) Interaction of the fragments characteristic of bactenecin 7 with phospholipid bilayers and their antimicrobial activity. J Biochem 117(3):560–565PubMedGoogle Scholar
  97. Tomasinsig L, Skerlavaj B, Papo N, Giabbai B, Shai Y, Zanetti M (2006) Mechanistic and functional studies of the interaction of a proline-rich antimicrobial peptide with mammalian cells. J Biol Chem 281(1):383–391PubMedCrossRefGoogle Scholar
  98. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98(15):8786–8791PubMedCrossRefGoogle Scholar
  99. Tossi A, Scocchi M, Skerlavaj B, Gennaro R (1994) Identification and characterization of a primary antibacterial domain in cap18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 339(1–2):108–112PubMedCrossRefGoogle Scholar
  100. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55(1):4–30PubMedCrossRefGoogle Scholar
  101. Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC (2006) Cargo-dependent mode of uptake and bioavailability of tat-containing proteins and peptides in living cells. FASEB J 20(11):1775–1784PubMedCrossRefGoogle Scholar
  102. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of ll-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214PubMedGoogle Scholar
  103. Vives E, Brodin P, Lebleu B (1997) A truncated hiv-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017PubMedCrossRefGoogle Scholar
  104. Vives E, Richard JP, Rispal C, Lebleu B (2003) Tat peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4(2):125–132PubMedCrossRefGoogle Scholar
  105. Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786(2):126–138PubMedGoogle Scholar
  106. Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 19(12):2346–2356PubMedCrossRefGoogle Scholar
  107. Walther C, Ott I, Gust R, Neundorf I (2009) Specific labeling with potent radiolabels alters the uptake of cell-penetrating peptides. Biopolymers 92(5):445–451PubMedCrossRefGoogle Scholar
  108. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587PubMedCrossRefGoogle Scholar
  109. Zhang L, Rozek A, Hancock RE (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722PubMedCrossRefGoogle Scholar
  110. Zhang X, Oglecka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A (2010) Dual functions of the human antimicrobial peptide ll-37–target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta 1798(12):2201–2208Google Scholar
  111. Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13(4):840–844PubMedCrossRefGoogle Scholar
  112. Zhao H, Sood R, Jutila A, Bose S, Fimland G, Nissen-Meyer J, Kinnunen PK (2006) Interaction of the antimicrobial peptide pheromone plantaricin a with model membranes: implications for a novel mechanism of action. Biochim Biophys Acta 1758(9):1461–1474PubMedCrossRefGoogle Scholar
  113. Zhu WL, Shin SY (2009a) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chem Biol Drug Des 73(2):209–215PubMedCrossRefGoogle Scholar
  114. Zhu WL, Shin SY (2009b) Effects of dimerization of the cell-penetrating peptide tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15(5):345–352PubMedCrossRefGoogle Scholar
  115. Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm KS, Shin SY (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide pep-1. Biochem Biophys Res Commun 349(2):769–774PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  1. 1.Institute of Biochemistry, Faculty of Biosciences, Pharmacy and PsychologyUniversity of LeipzigLeipzigGermany

Personalised recommendations