European Biophysics Journal

, Volume 40, Issue 5, pp 627–639 | Cite as

Quantitative prediction of the arrhythmogenic effects of de novo hERG mutations in computational models of human ventricular tissues

Original Paper


Mutations to hERG which result in changes to the rapid delayed rectifier current IKr can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of IKr reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased IKr maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster IKr activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.


Cardiac arrhythmia Computational modelling Human ether-a-go-go-related gene hERG Long QT syndrome Short QT syndrome 



Action potential duration


Cyclic nucleotide binding domain




Human ether-a-go-go-related gene


Rapid delayed rectifier potassium current


Long QT syndrome






Short QT syndrome


Transmural dispersion of repolarisation


Ventricular fibrillation


Wild type



This work was supported by the European Union through the BioSim Network of Excellence (contract number LSHB-CT-2004-005137). A.P.B. is supported by a Medical Research Council special training fellowship in biomedical informatics (G0701776). We acknowledge Professor Denis Wray (deceased), who initiated the research presented in this paper with support from the British Heart Foundation.


  1. Akhavan A, Atanasiu R, Noguchi T, Han W, Holder N, Shrier A (2005) Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization. J Cell Sci 118:2803–2812PubMedCrossRefGoogle Scholar
  2. Al-Owais M, Bracey K, Wray D (2009) Role of intracellular domains in the function of the herg potassium channel. Eur Biophys J 38:569–576PubMedCrossRefGoogle Scholar
  3. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP, Burashnikov E, Wu Y, Sargent JD, Schnikel S, Oberheiden R, Bhatia A, Hsu L-F, Haissaguerre M, Schimpf R, Borggrefe M, Wolpert C (2007a) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449Google Scholar
  4. Antzelevitch C, Sicouri S, Di Diego JM, Burashnikov A, Viskin S, Shimizu W, Yan GX, Kowey P, Zhang L (2007b) Does Tpeak-Tend provide an index of transmural dispersion of repolarization? Heart Rhythm 4:1114–1119PubMedCrossRefGoogle Scholar
  5. Arini PD, Bertran GC, Valverde ER, Laguna P (2008) T-wave width as an index of ventricular repolarization dispersion: evaluation in an isolated rabbit heart model. Biomed Signal Proc Cont 3:67–77CrossRefGoogle Scholar
  6. Benson AP, Halley G, Li P, Tong WC, Holden AV (2007) Virtual cell and tissue dynamics of ectopic activation of the ventricles. Chaos 17:015105PubMedCrossRefGoogle Scholar
  7. Benson AP, Aslanidi OV, Zhang H, Holden AV (2008) The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Prog Biophys Mol Biol 96:187–208PubMedCrossRefGoogle Scholar
  8. Benson AP, Al-Owais M, Tong WC, Holden AV (2009) HERG effects on ventricular action potential duration and tissue vulnerability: a computational study. Lect Notes Comput Sci 5528:172–181CrossRefGoogle Scholar
  9. Berecki G, Zegers JG, Verkerk AO, Bhuiyan ZA, De Jonge B, Veldkemp MW, Wilders R, Van Ginneken ACG (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:56–578CrossRefGoogle Scholar
  10. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Sheng Wu Y, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35Google Scholar
  11. Chen J, Zou A, Spawski I, Keating M, Sanguinetti MC (1999) Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. J Biol Chem 274:10113–10118PubMedCrossRefGoogle Scholar
  12. Clayton RH, Bernus OV, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seeman G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48CrossRefGoogle Scholar
  13. Cui J, Kagan A, Qin D, Mathew J, Malman TF, McDonald TV (2001) Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2. J Biol Chem 276:17244–17251PubMedCrossRefGoogle Scholar
  14. Durrer D, Van Dam RT, Freud GE, Janse MJ, Meijier FL, Arzbaecher RC (1970) Total excitation of the isolated human heart. Circulation 41:899–912Google Scholar
  15. Fink M, Giles WR, Noble D (2006) Contributions of inwardly rectifying K+ currents to repolarization assessed using mathematical models of human ventricular myocytes. Philos Trans R Soc A 364:1207–1222PubMedCrossRefGoogle Scholar
  16. Finlayson K, Witchel HJ, McCulloch J, Starkey J (2004) Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur J Pharmacol 500:129–142PubMedCrossRefGoogle Scholar
  17. Fossa A, Wisialowski T, Wolfgang E, Wang E, Avery M, Raunig DL, Fermini B (2004) Differential effects of HERG blocking agents on cardiac electrical alternans in guinea pig. Eur J Pharmacol 486:209–221PubMedCrossRefGoogle Scholar
  18. Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg 32:231–249PubMedCrossRefGoogle Scholar
  19. Gintant GA, Limberis JT, McDermott JS, Wegner CD, Cox BF (2001) The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharm 37:607–618CrossRefGoogle Scholar
  20. Glukov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimiov IR (2010) Transmural dispersion of repolarisation in failing and nonfailing human ventricle. Circ Res 106:981–991CrossRefGoogle Scholar
  21. Grandi E, Pasqualini FS, Bers DM (2009) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48:112–121PubMedCrossRefGoogle Scholar
  22. Hund TJ, Kucera JP, Otani NF, Rudy Y (2001) Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophys J 281:3324–3331CrossRefGoogle Scholar
  23. Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left-ventricular epicardial myocyte. Biophys J 87:1507–1525PubMedCrossRefGoogle Scholar
  24. Jalife J (2000) Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62:25–50PubMedCrossRefGoogle Scholar
  25. Kannankeril PJ, Roden DM (2007) Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol 22:39–43PubMedCrossRefGoogle Scholar
  26. Lawrence CL, Pollard CE, Hammond TG, Valentin J-P (2005) Nonclinical proarrhythmia models: predicting torsades de pointes. J Pharmacol Toxicol 52:46–59CrossRefGoogle Scholar
  27. Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372PubMedGoogle Scholar
  28. Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51:570–581CrossRefGoogle Scholar
  29. Morita H, Wu J, Zipes DP (2000) The QT syndromes: long and short. Lancet 372:750–763CrossRefGoogle Scholar
  30. Numaguchi H, Mullins FM, Johnson JP, Johns DC, Po SS, Yang IC-H, Tomaselli GF, Balser JR (2000) Probing the interactions between inactivation gating and D-sotalol block of HERG. Circ Res 287:1012–1018Google Scholar
  31. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385–1394Google Scholar
  32. Peitersen T, Grunnet M, Benson AP, Holden AV, Holstein-Rathlou N-H, Olesen S-P (2008) Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model. Heart Rhythm 5:734–741PubMedCrossRefGoogle Scholar
  33. Plonsey R, Barr RC (1988) Bioelectricity: a quantitative approach. Plenum, New YorkGoogle Scholar
  34. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2009) Numerical recipes: the art of scientific computing, 3rd ed. Cambridge University Press, CambridgeGoogle Scholar
  35. Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circulation 82:1206–1223PubMedGoogle Scholar
  36. Puisieux FL, Adamantidis MM, Dumotier BM, Dupuis BA (1996) Cisapride-induced prolongation of cardiac action potential and early afterdepolarizations in rabbit Purkinje fibres. Br J Pharmacol 117:1377–1379PubMedGoogle Scholar
  37. Qu Z, Garfinkel A (1999) An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans Biomed Eng 46:1166–1168CrossRefGoogle Scholar
  38. Qu Z, Garfinkel A, Chen P-S, Weiss JN (2000) Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 102:1664–1670Google Scholar
  39. Recanatini M, Cavalli A, Masetti M (2008) Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. Chem Med Chem 3:523–535PubMedCrossRefGoogle Scholar
  40. Rush S, Larsen H (1978) A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng 25:389–392CrossRefGoogle Scholar
  41. Sampson KJ, Iyer V, Marks AR, Kass RS (2010) A computational model of Purkinje fibre single cell electrophysiology: implications for the long QT syndrome. J Physiol 588:2643–2655PubMedCrossRefGoogle Scholar
  42. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia. Cell 81:299–307Google Scholar
  43. Satler CA, Walsh EP, Vesely MR, Plummer MH, Ginsburg GS, Jacob HJ (1996) Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome. Am J Med Genet 65:27–35PubMedCrossRefGoogle Scholar
  44. Starmer CF, Biktashev VN, Romashko DN, Stepanov MR, Makarova ON, Krinsky VI (1993) Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Biophys J 65:1775–1787PubMedCrossRefGoogle Scholar
  45. Stewart P, Aslanidi OV, Noble D, Noble PJ, Boyett MR, Zhang H (2009) Mathematical models of the electrical action potential of Purkinje fibre cells. Philos Trans Roy Soc A 367:2225–2255CrossRefGoogle Scholar
  46. Ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol 291:H1088–H1100Google Scholar
  47. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol 286:H1573–H1589Google Scholar
  48. Thomas D, Kiehn J, Katus HA, Karle CA (2003) Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60:235–241PubMedCrossRefGoogle Scholar
  49. Tseng GN (2001) I(Kr): the hERG channel. J Mol Cell Cardiol 33:835–849PubMedCrossRefGoogle Scholar
  50. Walton RD, Benoist D, Hyatt CJ, Gilbert SH, White E, Bernus O (2010) Dual excitation wavelength epi-fluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm 7:1843–1849PubMedCrossRefGoogle Scholar
  51. Weiss JN, Karma A, Shiferaw Y, Chen P-S, Garfinkel A, Qu Z (2006) From pulses to pulseless: the saga of cardiac alternans. Circ Res 98:1244–1253PubMedCrossRefGoogle Scholar
  52. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y (1995) Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 77:140–152PubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2011

Authors and Affiliations

  • Alan P. Benson
    • 1
  • Moza Al-Owais
    • 2
  • Arun V. Holden
    • 1
  1. 1.Institute of Membrane & Systems Biology, and Multidisciplinary Cardiovascular Research CentreUniversity of LeedsLeedsUK
  2. 2.Division of Cardiovascular & Neuronal Remodelling, and Multidisciplinary Cardiovascular Research CentreUniversity of LeedsLeedsUK

Personalised recommendations