European Biophysics Journal

, Volume 40, Issue 3, pp 221–234

Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR

  • S. K. Straus
  • W. R. P. Scott
  • C. D. Schwieters
  • D. A. Marvin
Original Paper

Abstract

Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and as practical tools in areas as diverse as immunology and solid-state physics. The strains fd, M13 and f1 are virtually identical filamentous phages that infect bacteria expressing F-pili, and are sometimes grouped as the Ff phages. For historical reasons fd has often been used for structural studies, but M13 and f1 are more often used for biological experiments. Many other strains have been identified that are genetically quite distinct from Ff and yet have a similar molecular structure and life cycle. One of these, Pf1, gives the highest resolution X-ray fibre diffraction patterns known for filamentous bacteriophage. These diffraction patterns have been used in the past to derive a molecular model for the structure of the phage. Solid-state NMR experiments have been used in separate studies to derive a significantly different model of Pf1. Here we combine previously published X-ray fibre diffraction data and solid-state NMR data to give a consensus structure model for Pf1 filamentous bacteriophage, and we discuss the implications of this model for assembly of the phage at the bacterial membrane.

Keywords

α-Helix Fibre diffraction Solid-state NMR Xplor-NIH 

References

  1. Berjanskii MV, Neal S, Wishart DS (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69PubMedCrossRefGoogle Scholar
  2. Bertram R, Quine JR, Chapman MS, Cross TA (2000) Atomic refinement using orientational restraints from solid-state NMR. J Magn Reson 147:9–16PubMedCrossRefGoogle Scholar
  3. Bertram R, Asbury T, Fabiola F, Quine JR, Cross TA, Chapman MS (2003) Atomic refinement with correlated solid-state NMR restraints. J Magn Reson 163:300–309PubMedCrossRefGoogle Scholar
  4. Brünger A (1993) X-PLOR Version 3.1. Yale University Press, New HavenGoogle Scholar
  5. Bryan RK (1987) Maximum entropy in structural molecular biology: the fiber diffraction phase problem. In: Smith CR, Erickson GJ (eds) Maximum-entropy and Baysian spectral analysis and estimation problems. Reidel, Dordrecht, pp 207–228Google Scholar
  6. Bryan RK, Bansal M, Folkhard W, Nave C, Marvin DA (1983) Maximum-entropy calculation of the electron density at 4 Ǻ resolution of Pf1 filamentous bacteriophage. Proc Natl Acad Sci USA 80:4728–4731PubMedCrossRefGoogle Scholar
  7. Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D 50:760–763CrossRefGoogle Scholar
  8. Cordier F, Grzesiek S (2002) Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol 715:739–752CrossRefGoogle Scholar
  9. Cornilescu G, Bax A (2000) Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase. J Am Chem Soc 122:10143–10154CrossRefGoogle Scholar
  10. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  11. Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697CrossRefGoogle Scholar
  12. Esposito L, De Simone A, Zagari A, Vitagliano L (2005) Correlation between ω and ψ dihedral angles in protein structures. J Mol Biol 347:483–487PubMedCrossRefGoogle Scholar
  13. Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129:2338–2344PubMedCrossRefGoogle Scholar
  14. Gonzalez A, Nave C, Marvin DA (1995) Pf1 filamentous bacteriophage: refinement of a molecular model by simulated annealing using 3.3 Å resolution X-ray fibre diffraction data. Acta Crystallogr Sect D 51:792–804CrossRefGoogle Scholar
  15. Griffith J, Manning M, Dunn K (1981) Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform-water interface. Cell 23:747–753PubMedCrossRefGoogle Scholar
  16. Grishaev A, Bax A (2004) An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J Am Chem Soc 126:7281–7292PubMedCrossRefGoogle Scholar
  17. Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PDB viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  18. Haeberlen U (1976) In: Waugh JS (ed) Advances in magnetic resonance, suppl 1. Academic Press, New YorkGoogle Scholar
  19. Hall JB, Fushman D (2006) Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters. J Am Chem Soc 128:7855–7870PubMedCrossRefGoogle Scholar
  20. Hemminga MA, Vos WL, Nazarov PV, Koehorst RBM, Wolfs CJAM, Spruijt RB, Stopar D (2010) Viruses: incredible nanomachines. New advances with filamentous phages. Eur Biophys J 39:541–550PubMedCrossRefGoogle Scholar
  21. IUPAC (1970) Abbreviations and symbols for the description of the conformation of polypeptide chains. J Biol Chem 245:6489–6497Google Scholar
  22. Kim S, Cross TA (2002) Uniformity, ideality and hydrogen bonds in transmembrane α-helices. Biophys J 83:2084–2095PubMedCrossRefGoogle Scholar
  23. Kleywegt GJ (2000) Validation of protein crystal structures. Acta Crystallogr Sect D 56:249–265CrossRefGoogle Scholar
  24. Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950CrossRefGoogle Scholar
  25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  26. Lee J, Chen J, Brooks CL III, Im W (2008) Application of solid-state NMR restraint potentials in membrane protein modeling. J Magn Reson 193:68–76PubMedCrossRefGoogle Scholar
  27. Lipsitz RS, Sharma Y, Brooks BR, Tjandra N (2002) Hydrogen bonding in high-resolution protein structures: a new method to assess NMR protein geometry. J Am Chem Soc 124:10621–10626PubMedCrossRefGoogle Scholar
  28. MacArthur MW, Thornton JM (1996) Deviations from planarity of the peptide bond in peptides and proteins. J Mol Biol 264:1180–1195PubMedCrossRefGoogle Scholar
  29. Marvin DA (1978) Structure of the filamentous phage virion. In: Denhardt DT, Dressler D, Ray DS (eds) The single-stranded DNA phages. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 583–603Google Scholar
  30. Marvin DA (1990) Model-building studies of Inovirus: genetic variations on a geometric theme. Int J Biol Macromol 12:125–138PubMedCrossRefGoogle Scholar
  31. Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158PubMedCrossRefGoogle Scholar
  32. Marvin DA, Wachtel EJ (1975) Structure and assembly of filamentous bacterial viruses. Nature 253:19–23PubMedCrossRefGoogle Scholar
  33. Marvin DA, Wachtel EJ (1976) Structure and assembly of filamentous bacterial viruses. Phil Trans R Soc Lond B 276:81–98CrossRefGoogle Scholar
  34. Marvin DA, Wiseman RL, Wachtel EJ (1974) Filamentous bacterial viruses XI. Molecular architecture of the Class II (Pf1, Xf) virion. J Mol Biol 82:121–138PubMedCrossRefGoogle Scholar
  35. Marvin DA, Bryan RK, Nave C (1987) Pf1 Inovirus: electron density distribution calculated by a maximum entropy algorithm from native fibre diffraction data to 3 Å resolution and single isomorphous replacement data to 5 Å resolution. J Mol Biol 193:315–343PubMedCrossRefGoogle Scholar
  36. Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK (2006) Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J Mol Biol 355:294–309PubMedCrossRefGoogle Scholar
  37. Mason J (1993) Conventions for reporting of nuclear magnetic shielding (or shift) tensors. Solid State Nucl Magn Reson 2:285–288PubMedCrossRefGoogle Scholar
  38. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152PubMedCrossRefGoogle Scholar
  39. Mesleh MF, Opella SJ (2003) Dipolar waves as NMR maps of helices in proteins. J Magn Reson 163:288–299PubMedCrossRefGoogle Scholar
  40. Nave C, Fowler AG, Malsey S, Marvin DA, Siegrist H, Wachtel EJ (1979) Macromolecular structural transitions in Pf1 filamentous bacterial virus. Nature 281:232–234PubMedCrossRefGoogle Scholar
  41. Opella SJ, Zeri AC, Park SH (2008) Structure, dynamics, and assembly of filamentous bacteriophages by nuclear magnetic resonance spectroscopy. Annu Rev Phys Chem 59:635–657PubMedCrossRefGoogle Scholar
  42. Park SH, Son WS, Mukhopadhyay R, Valafar H, Opella SJ (2009) Phage-induced alignment of membrane proteins enables the measurement and structural analysis of residual dipolar couplings with dipolar waves and lambda-maps. J Am Chem Soc 131:14140–14141PubMedCrossRefGoogle Scholar
  43. Priestle JP (2003) Improved dihedral-angle restraints for protein structure refinement. J Appl Crystallogr 36:34–42CrossRefGoogle Scholar
  44. Ramamoorthy A, Wu CH, Opella SJ (1999) Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. J Magn Reson 140:131–140PubMedCrossRefGoogle Scholar
  45. Ramamoorthy A, Wei Y, Lee DK (2004) PISEMA solid-state NMR spectroscopy. Annu Rep NMR Spectrosc 52:1–52CrossRefGoogle Scholar
  46. Russel M, Model P (2006) Filamentous phage. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 146–160Google Scholar
  47. Saitô H, Ando I, Ramamoorthy A (2010) Chemical shift tensor—the heart of NMR: insights into biological aspects of proteins. Prog Nucl Magn Reson Spectrosc 57:181–228PubMedCrossRefGoogle Scholar
  48. Schweiters CD, Clore GM (2001) Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J Magn Reson 152:288–302CrossRefGoogle Scholar
  49. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73PubMedCrossRefGoogle Scholar
  50. Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Progr NMR Spectrosc 48:47–62CrossRefGoogle Scholar
  51. Specthrie L, Greenberg J, Glucksman MJ, Diaz J, Makowski L (1987) Structural responsiveness of filamentous bacteriophage Pf1: comparison of virion structure in fibers and solution. Biophys J 52:199–214PubMedCrossRefGoogle Scholar
  52. Straus SK, Scott WRP, Watts A (2003) Assessing the effects of time and spatial averaging in 15 N chemical shift/15 N–1H dipolar correlation solid state NMR experiments. J Biomol NMR 26:283–295PubMedCrossRefGoogle Scholar
  53. Straus SK, Scott WRP, Marvin DA (2008a) The hand of the filamentous bacteriophage helix. Eur Biophys J 37:1077–1082PubMedCrossRefGoogle Scholar
  54. Straus SK, Scott WRP, Symmons MF, Marvin DA (2008b) On the structures of filamentous bacteriophage Ff (fd, f1, M13). Eur Biophys J 37:521–527PubMedCrossRefGoogle Scholar
  55. Szymczyna BR, Taurog RE, Young MJ, Snyder JC, Johnson JE, Williamson JR (2009) Synergy of NMR, computation, and X-ray crystallography for structural biology. Structure 17:499–507PubMedCrossRefGoogle Scholar
  56. Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, Opella SJ (2004) Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy. J Mol Biol 341:869–879PubMedCrossRefGoogle Scholar
  57. Thiriot DS, Nevzorov AA, Opella SJ (2005) Structural basis of the temperature transition of Pf1 bacteriophage. Protein Sci 14:1064–1070PubMedCrossRefGoogle Scholar
  58. Vosegaard T, Nielsen NC (2002) Towards high-resolution solid-state NMR on large uniformly 15 N- and [13C, 15 N]-labeled membrane proteins in oriented lipid bilayers. J Biomol NMR 22:225–247PubMedCrossRefGoogle Scholar
  59. Wang G (2010) Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance (13)C NMR spectroscopy. Biochim Biophys Acta 1798:114–121PubMedCrossRefGoogle Scholar
  60. Wang H, Stubbs G (1993) Molecular dynamics in refinement against fiber diffraction data. Acta Crystallogr Sect A 49:504–513CrossRefGoogle Scholar
  61. Webster RE (2001) Filamentous phage biology. In: Barbas CF III, Burton DR, Scott JK, Silverman GJ (eds) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1.1–1.37Google Scholar
  62. Welsh LC, Marvin DA, Perham RN (1998a) Analysis of X-ray diffraction from fibres of Pf1 Inovirus (filamentous bacteriophage) shows that the DNA in the virion is not highly ordered. J Mol Biol 284:1265–1271PubMedCrossRefGoogle Scholar
  63. Welsh LC, Symmons MF, Sturtevant JM, Marvin DA, Perham RN (1998b) Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 Å resolution. J Mol Biol 283:155–177PubMedCrossRefGoogle Scholar
  64. Welsh LC, Symmons MF, Marvin DA (2000) The molecular structure and structural transition of the α-helical capsid in filamentous bacteriophage Pf1. Acta Crystallogr Sect D 56:137–150CrossRefGoogle Scholar
  65. Zeri AC, Mesleh MF, Nevzorov AA, Opella SJ (2003) Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 100:6458–6463PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2010

Authors and Affiliations

  • S. K. Straus
    • 1
  • W. R. P. Scott
    • 1
  • C. D. Schwieters
    • 2
  • D. A. Marvin
    • 3
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada
  2. 2.Division of Computational Bioscience, Center for Information TechnologyNational Institutes of HealthBethesdaUSA
  3. 3.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations