European Biophysics Journal

, Volume 40, Issue 1, pp 93–101

Transiently crosslinked F-actin bundles

  • Dan Strehle
  • Jörg Schnauß
  • Claus Heussinger
  • José Alvarado
  • Mark Bathe
  • Josef Käs
  • Brian Gentry
Biophysics Letter

Abstract

F-actin bundles are prominent cytoskeletal structures in eukaryotes. They provide mechanical stability in stereocilia, microvilli, filopodia, stress fibers and the sperm acrosome. Bundles are typically stabilized by a wide range of specific crosslinking proteins, most of which exhibit off-rates on the order of 1s−1. Yet F-actin bundles exhibit structural and mechanical integrity on time scales that are orders of magnitude longer. By applying large deformations to reconstituted F-actin bundles using optical tweezers, we provide direct evidence of their differential mechanical response in vitro: bundles exhibit fully reversible, elastic response on short time scales and irreversible, elasto-plastic response on time scales that are long compared to the characteristic crosslink dissociation time. Our measurements show a broad range of characteristic relaxation times for reconstituted F-actin bundles. This can be reconciled by considering that bundle relaxation behavior is also modulated by the number of filaments, crosslinking type and occupation number as well as the consideration of defects due to filament ends.

Keywords

Actin bundle mechanics Transient crosslinkers Stressfibers Cytoskeleton Semiflexible polymers Optical tweezers 

Supplementary material

249_2010_621_MOESM1_ESM.pdf (318 kb)
PDF (317 KB)

PDF (556 KB)

PDF (288 KB)

PDF (1080 KB)

PDF (630 KB)

References

  1. Aragon SR, Pecora R (1985) Dynamics of wormlike chains. Macromolecules 18(10):1868–1875. doi:10.1021/ma00152a014 CrossRefGoogle Scholar
  2. Aratyn YS, Schaus TE, Taylor EW, Borisy GG (2007) Intrinsic dynamic behavior of fascin in filopodia. Mol Biol Cell 18(10):3928–3940. doi:10.1091/mbc.E07-04-0346 CrossRefPubMedGoogle Scholar
  3. Bartles JR (2000) Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol 12(1):72–78. doi:10.1016/S0955-0674(99)00059-9 CrossRefPubMedGoogle Scholar
  4. Bathe M, Heussinger C, Claessens MM, Bausch AR, Frey E (2008) Cytoskeletal bundle mechanics. Biophys J 94(8):2955–2964. doi:10.1529/biophysj.107.119743 CrossRefPubMedGoogle Scholar
  5. Claessens MMAE, Bathe M, Frey E, Bausch AR (2006) Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat Mat 5(9):748–753. doi:10.1038/nmat1718 CrossRefGoogle Scholar
  6. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148–102. doi:10.1103/PhysRevLett.87.148102 CrossRefGoogle Scholar
  7. Fazli H, Golestanian R (2007) Aggregation kinetics of stiff polyelectrolytes in the presence of multivalent salt. Phys Rev E 76(4):041–801.doi:10.1103/PhysRevE.76.041801 CrossRefGoogle Scholar
  8. Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10):3796–3805. doi:10.1529/biophysj.105.072215 CrossRefPubMedGoogle Scholar
  9. Ferrer JM, Lee H, Chen J, Pelz B, Nakamura F, Kamm RD, Lang MJ (2008) Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc Natl Acad Sci USA 105(27):9221–9226. doi:10.1073/pnas.0706124105 CrossRefPubMedGoogle Scholar
  10. Heintzelman MB, Mooseker MS (1992) Assembly of the intestinal brush border cytoskeleton. Curr Top Dev Biol 26:93–122CrossRefPubMedGoogle Scholar
  11. Heussinger C, Schaefer B, Frey E (2007) Nonaffine rubber elasticity for stiff polymer networks. Phys Rev E Stat Nonlin Soft Matter Phys 76(3 Pt 1):031,906Google Scholar
  12. Hoffman BD, Massiera G, Citters KMV, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci 103(27):10259–10264. doi:10.1073/pnas.0510348103 CrossRefGoogle Scholar
  13. Hosek M, Tang JX (2004) Polymer-induced bundling of f actin and the depletion force. Phys Rev E 69(5):051,907. doi:10.1103/PhysRevE.69.051907
  14. Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173(3):383–394. doi:10.1083/jcb.200511093 CrossRefPubMedGoogle Scholar
  15. Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc., SunderlandGoogle Scholar
  16. Janmey PA, Hvidt S, Käs J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels. elastic modulus and filament motions. J Biol Chem 269(51):32503–32513Google Scholar
  17. Käs J, Strey H, Tang JX, Finger D, Ezzell R, Sackmann E, Janmey PA (1996) F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J 70(2)Google Scholar
  18. Katoh K, Kano Y, Masuda M, Onishi H, Fujiwara K (1998) Isolation and contraction of the stress fiber. Mol Biol Cell 9(7):1919–1938PubMedGoogle Scholar
  19. Koch D, Betz T, Ehrlicher A, Gogler M, Stuhrmann B, Käs J, Dholakia K, Spalding GC (2004) Optical control of neuronal growth. In: Optical Trapping and Optical Micromanipulation, SPIE, Denver, CO, USA, vol 5514, pp 428–436Google Scholar
  20. Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci 106(36):15192–15197. doi:10.1073/pnas.0903974106 CrossRefGoogle Scholar
  21. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–3773. doi:10.1529/biophysj.105.071506 CrossRefPubMedGoogle Scholar
  22. Lai GH, Coridan R, Zribi OV, Golestanian R, Wong GCL (2007) Evolution of growth modes for polyelectrolyte bundles. Phys Rev Lett 98(18):187,802. doi:10.1103/PhysRevLett.98.187802 CrossRefGoogle Scholar
  23. Meeusen RL, Cande WZ (1979) N-ethylmaleimide-modified heavy meromyosin. a probe for actomyosin interactions. J Cell Biol 82(1):57–65CrossRefPubMedGoogle Scholar
  24. Pollard T, Earnshaw W (2002) Cell biology. Elsevier Science, PhiladelphiaGoogle Scholar
  25. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709. doi:10.1126/science.1092053 CrossRefPubMedGoogle Scholar
  26. Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: transduction, tuning, and transmission in the inner ear. Ann Rev Cell Biol 4:63–92. doi:10.1146/annurev.cb.04.110188.000431 PubMedGoogle Scholar
  27. Semmrich C, Storz T, Glaser J, Merkel R, Bausch AR, Kroy K (2007) Glass transition and rheological redundancy in f-actin solutions. Proc Natl Acad Sci 104(51):20199–20203. doi:10.1073/pnas.0705513104 CrossRefGoogle Scholar
  28. Sheetz M, Chasan R, Spudich J (1984) ATP-dependent movement of myosin in vitro: characterization of a quantitative assay. J Cell Biol 99(5):1867–1871CrossRefPubMedGoogle Scholar
  29. Shin JH, Mahadevan L, So P, Matsudaira P (2004) Bending stiffness of a crystalline actin bundle. J Mol Biol 337(2):255–261. doi:10.1016/j.jmb.2004.01.028 CrossRefPubMedGoogle Scholar
  30. Smith D, Ziebert F, Humphrey D, Duggan C, Steinbeck M, Zimmermann W, Käs J (2007) Molecular motor-induced instabilities and cross linkers determine biopolymer organization. Biophys J 93(12):4445–4452. doi:10.1529/biophysj.106.095919 CrossRefGoogle Scholar
  31. Stuhrmann B, Jahnke H, Schmidt M, Jähn K, Betz T, Müller K, Rothermel A, Käs J, Robitzki AA (2006) Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells. Rev Sci Instrum 77(6):063116-1–063116-11. doi:10.1063/1.2214961 CrossRefGoogle Scholar
  32. Taute KM, Pampaloni F, Frey E, Florin E (2008) Microtubule dynamics depart from the wormlike chain model. Phys Rev Lett 100(2):028102-1–028102-4. doi:10.1103/PhysRevLett.100.028102 CrossRefGoogle Scholar
  33. Tolomeo JA, Holley MC (1997) Mechanics of microtubule bundles in pillar cells from the inner ear. Biophys J 73(4):2241–2247CrossRefPubMedGoogle Scholar
  34. Trepat X, Lenormand G, Fredberg JJ (2008) Universality in cell mechanics. Soft Matter 4(9):1750–1759CrossRefGoogle Scholar
  35. Wachsstock D, Schwartz W, Pollard T (1993) Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65(1):205–214. doi:10.1016/S0006-3495(93)81059-2 CrossRefPubMedGoogle Scholar
  36. Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J (2005) Optical rheology of biological cells. Phys Rev Lett 94(9):098–103. doi:10.1103/PhysRevLett.94.098103 Google Scholar
  37. Xu J, Wirtz D, Pollard TD (1998) Dynamic cross-linking by alpha-Actinin determines the mechanical properties of actin filament networks. J Biol Chem 273(16):9570–9576. doi:10.1074/jbc.273.16.9570 CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2010

Authors and Affiliations

  • Dan Strehle
    • 1
  • Jörg Schnauß
    • 1
  • Claus Heussinger
    • 2
  • José Alvarado
    • 1
    • 3
  • Mark Bathe
    • 4
  • Josef Käs
    • 1
  • Brian Gentry
    • 1
    • 3
  1. 1.Soft matter physics division, Institute for Experimental Physics IUniversity of LeipzigLeipzigGermany
  2. 2.Laboratoire de Physique de la Matière Condensée et Nanostructures, UMR CNRS 5586Université de Lyon IVilleurbanneFrance
  3. 3.Biological Soft Matter GroupFOM Institute AMOLFAmsterdamThe Netherlands
  4. 4.Department of Biological EngineeringCambridgeUSA

Personalised recommendations