European Biophysics Journal

, Volume 39, Issue 9, pp 1365–1372 | Cite as

How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis

  • Olivier Sperandio
  • Liliane Mouawad
  • Eulalie Pinto
  • Bruno O. Villoutreix
  • David Perahia
  • Maria A. Miteva
Biophysics Letter


Better treatment of protein flexibility is essential in structure-based drug design projects such as virtual screening and protein-ligand docking. Diversity in ligand-binding mechanisms and receptor conformational changes makes it difficult to treat dynamic features of the receptor during the docking simulation. Thus, the use of pregenerated multiple receptor conformations is applied today in virtual screening studies. However, generation of a small relevant set of receptor conformations remains challenging. To address this problem, we propose a new protocol for the generation of multiple receptor conformations via normal mode analysis and for the selection of several receptor conformations suitable for docking/virtual screening. We validated this protocol on cyclin-dependent kinase 2, which possesses a binding site located at the interface between two subdomains and is known to undergo significant conformational changes in the active site region upon ligand binding. We believe that the suggested rules for the choice of suitable receptor conformations can be applied to other targets when dealing with in silico screening on flexible receptors.


Receptor flexibility Docking Virtual screening Normal modes Cdk2 


  1. Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated web tool. Protein Sci 14:633–643CrossRefPubMedGoogle Scholar
  2. Amaro RE, Minh DD, Cheng LS, Lindstrom WM Jr, Olson AJ, Lin JH, Li WW, McCammon JA (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129:7764–7765CrossRefPubMedGoogle Scholar
  3. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705CrossRefPubMedGoogle Scholar
  4. Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48:4432–4443CrossRefPubMedGoogle Scholar
  5. Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, May LT, Christopoulos A, Dalton JT, Sexton PM, Zhang XK, Abagyan R (2007) Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc Natl Acad Sci USA 104:11927–11932CrossRefPubMedGoogle Scholar
  6. Bolstad ES, Anderson AC (2008) In pursuit of virtual lead optimization: the role of the receptor structure and ensembles in accurate docking. Proteins 73:566–580CrossRefPubMedGoogle Scholar
  7. Bolstad ES, Anderson AC (2009) In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins 75:62–74CrossRefPubMedGoogle Scholar
  8. Bowman AL, Lerner MG, Carlson HA (2007a) Protein flexibility and species specificity in structure-based drug discovery: dihydrofolate reductase as a test system. J Am Chem Soc 129:3634–3640CrossRefPubMedGoogle Scholar
  9. Bowman AL, Nikolovska-Coleska Z, Zhong H, Wang S, Carlson HA (2007b) Small molecule inhibitors of the MDM2–p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814CrossRefPubMedGoogle Scholar
  10. Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401CrossRefPubMedGoogle Scholar
  11. B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14:394–400CrossRefPubMedGoogle Scholar
  12. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  13. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225CrossRefPubMedGoogle Scholar
  14. Cavasotto CN, Kovacs JA, Abagyan RA (2005a) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–9640CrossRefPubMedGoogle Scholar
  15. Cavasotto CN, Orry AJ, Abagyan R (2005b) The challenge of considering receptor flexibility in ligand docking and virtual screening. Curr Comput Aided Drug Design 1:423–440CrossRefGoogle Scholar
  16. ChemBridge Corporation. (
  17. Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51:3878–3894CrossRefPubMedGoogle Scholar
  18. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51:6237–6255CrossRefPubMedGoogle Scholar
  19. Cui Q, Li G, Ma J, Karplus M (2004) A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase. J Mol Biol 340:345–372CrossRefPubMedGoogle Scholar
  20. Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME (2001) Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure 9:389–397CrossRefPubMedGoogle Scholar
  21. Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084CrossRefPubMedGoogle Scholar
  22. Floquet N, Marechal JD, Badet-Denisot MA, Robert CH, Dauchez M, Perahia D (2006) Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett 580:5130–5136CrossRefPubMedGoogle Scholar
  23. Frembgen-Kesner T, Elcock AH (2006) Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. J Mol Biol 359:202–214CrossRefPubMedGoogle Scholar
  24. Frimurer TM, Peters GH, Iversen LF, Andersen HS, Moller NP, Olsen OH (2003) Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities. Biophys J 84:2273–2281CrossRefPubMedGoogle Scholar
  25. Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol ( in press)Google Scholar
  26. Hardcastle IR, Arris CE, Bentley J, Boyle FT, Chen Y, Curtin NJ, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Jewsbury P, Menyerol J, Mesguiche V, Newell DR, Noble ME, Pratt DJ, Wang LZ, Whitfield HJ (2004) N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem 47:3710–3722CrossRefPubMedGoogle Scholar
  27. Hornak V, Simmerling C (2007) Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov Today 12:132–138CrossRefPubMedGoogle Scholar
  28. Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421CrossRefPubMedGoogle Scholar
  29. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801CrossRefPubMedGoogle Scholar
  30. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306CrossRefPubMedGoogle Scholar
  31. Kairys V, Gilson MK (2002) Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility. J Comput Chem 23:1656–1670CrossRefPubMedGoogle Scholar
  32. Kong Y, Ma J, Karplus M, Lipscomb WN (2006) The allosteric mechanism of yeast chorismate mutase: a dynamic analysis. J Mol Biol 356:237–247CrossRefPubMedGoogle Scholar
  33. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288CrossRefPubMedGoogle Scholar
  34. Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinf 9:396CrossRefGoogle Scholar
  35. Lagorce D, Pencheva T, Villoutreix BO, Miteva MA (2009) DG-AMMOS: a new tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem Biol 9:6CrossRefPubMedGoogle Scholar
  36. Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11:184–197CrossRefPubMedGoogle Scholar
  37. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1988) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  38. Marechal JD, Perahia D (2008) Use of normal modes for structural modeling of proteins: the case study of rat heme oxygenase 1. Eur Biophys J 37:1157–1165CrossRefPubMedGoogle Scholar
  39. May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51:3499–3506CrossRefPubMedGoogle Scholar
  40. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502CrossRefPubMedGoogle Scholar
  41. Miteva MA, Robert CH, Maréchal JD, Perahia D (2010) Receptor flexibility in ligand docking and virtual screening. In: Miteva MA (Ed) In silico lead discovery. Bentham Science Publishers (in press)Google Scholar
  42. Moitessier N, Henry C, Maigret B, Chapleur Y (2004) Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site. J Med Chem 47:4178–4187CrossRefPubMedGoogle Scholar
  43. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134CrossRefPubMedGoogle Scholar
  44. Mouawad L, Perahia D (1996) Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol 258:393–410CrossRefPubMedGoogle Scholar
  45. Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J Med Chem 50:6507–6518CrossRefPubMedGoogle Scholar
  46. Perahia D, Mouawad L (1995) Computation of low-frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput Chem 19:241–246CrossRefPubMedGoogle Scholar
  47. Polgar T, Keseru GM (2006) Ensemble docking into flexible active sites. Critical evaluation of FlexE against JNK-3 and beta-secretase. J Chem Inf Model 46:1795–1805CrossRefPubMedGoogle Scholar
  48. Robert CH, Cherfils J, Mouawad L, Perahia D (2004) Integrating three views of Arf1 activation dynamics. J Mol Biol 337:969–983CrossRefPubMedGoogle Scholar
  49. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49:716–725CrossRefPubMedGoogle Scholar
  50. Sander T, Liljefors T, Balle T (2008) Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model 26:1259–1268CrossRefPubMedGoogle Scholar
  51. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH (1995) Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22:378–391CrossRefPubMedGoogle Scholar
  52. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84CrossRefPubMedGoogle Scholar
  53. Sielecki TM, Boylan JF, Benfield PA, Trainor GL (2000) Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 43:1–18CrossRefPubMedGoogle Scholar
  54. Sims PA, Wong CF, McCammon JA (2003) A computational model of binding thermodynamics: the design of cyclin-dependent kinase 2 inhibitors. J Med Chem 46:3314–3325CrossRefPubMedGoogle Scholar
  55. Subramanian J, Sharma S, B-Rao C (2006) A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. J Med Chem 49:5434–5441CrossRefPubMedGoogle Scholar
  56. Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614CrossRefPubMedGoogle Scholar
  57. Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7CrossRefPubMedGoogle Scholar
  58. Tatsumi R, Fukunishi Y, Nakamura H (2004) A hybrid method of molecular dynamics and harmonic dynamics for docking of flexible ligand to flexible receptor. J Comput Chem 25:1995–2005CrossRefPubMedGoogle Scholar
  59. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541CrossRefPubMedGoogle Scholar
  60. Thomas MP, McInnes C, Fischer PM (2006) Protein structures in virtual screening: a case study with CDK2. J Med Chem 49:92–104CrossRefPubMedGoogle Scholar
  61. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184PubMedGoogle Scholar
  62. Wilson EB, Decius JC, Cross PC (1980) Molecular vibrations. Dover, New YorkGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2010

Authors and Affiliations

  • Olivier Sperandio
    • 1
  • Liliane Mouawad
    • 2
    • 3
  • Eulalie Pinto
    • 1
  • Bruno O. Villoutreix
    • 1
  • David Perahia
    • 4
  • Maria A. Miteva
    • 1
  1. 1.MTI, Inserm UMR-S 973University Paris DiderotParisFrance
  2. 2.Institut Curie, Centre de RechercheOrsay CedexFrance
  3. 3.Inserm U759Centre Universitaire d’OrsayOrsay CedexFrance
  4. 4.Institut de Biochimie et Biophysique Moléculaire et CellulaireUniversité Paris-SudOrsayFrance

Personalised recommendations