European Biophysics Journal

, 39:241 | Cite as

Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs

  • A. J. W. G. VisserEmail author
  • S. P. Laptenok
  • N. V. Visser
  • A. van Hoek
  • D. J. S. Birch
  • J.-C. Brochon
  • J. W. Borst
Original Paper


Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.


Time-resolved fluorescence Maximum entropy Lifetime distribution FRET Visible fluorescent proteins 



We thank Rik Slijkhuis for assistance in a few experiments and Adrie Westphal for fruitful discussions. The research was funded by the Sandwich Programme of Wageningen University and by the European Community MRTN-CT-019481 (to S.L.). The receipt of a Scottish Universities Physics Alliance distinguished fellowship (to A.V.) is gratefully acknowledged.

Supplementary material

249_2009_528_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3123 kb)


  1. Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009) Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol 85:287–297CrossRefPubMedGoogle Scholar
  2. Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294CrossRefPubMedGoogle Scholar
  3. Bae JH, Rubini M, Jung G, Wiegand G, Seifert MH, Azim MK, Kim JS, Zumbusch A, Holak TA, Moroder L, Huber R, Budisa N (2003) Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J Mol Biol 328:1071–1081CrossRefPubMedGoogle Scholar
  4. Barber PR, Ameer-Beg S, Gilbey J, Carlin LM, Keppler M, Ng TC, Vojnovic B (2009) Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis. J R Soc Interface 6:S93–S105CrossRefGoogle Scholar
  5. Bastiaens PIH, van Hoek A, Wolkers WF, Brochon JC, Visser AJWG (1992a) Comparison of the dynamic structures of lipoamide dehydrogenase and glutathione reductase by time-resolved polarized flavin fluorescence. Biochemistry 31:7050–7060CrossRefPubMedGoogle Scholar
  6. Bastiaens PIH, van Hoek A, Benen JAE, Brochon JC, Visser AJWG (1992b) Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J 63:839–853CrossRefPubMedGoogle Scholar
  7. Borst JW, Hink MA, van Hoek A, Visser AJWG (2005) Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc 15:153–160CrossRefPubMedGoogle Scholar
  8. Borst JW, Laptenok SP, Westphal AH, Kühnemuth R, Hornen H, Visser NV, Kalinin S, Aker J, van Hoek A, Seidel CAM, Visser AJWG (2008) Structural changes of yellow cameleon domains observed by quantitative FRET analysis and polarized fluorescence correlation spectroscopy. Biophys J 95:5399–5411CrossRefPubMedGoogle Scholar
  9. Brochon JC (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311CrossRefPubMedGoogle Scholar
  10. Cotlet M, Hofkens J, Habuchi S, Dirix G, Van Guyse M, Michiels J, Vanderleyden J, De Schryver FC (2001) Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proc Natl Acad Sci USA 98:14398–14403CrossRefPubMedGoogle Scholar
  11. Day RN, Booker CF, Periasamy A (2008) Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy. J Biomed Opt 13:031203CrossRefPubMedGoogle Scholar
  12. Elder AD, Domin A, Schierle GSK, Lindon C, Pines J, Esposito A, Kaminski CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitised fluorescence emission. J R Soc Interface 6:S59–S81CrossRefGoogle Scholar
  13. Esposito A, Gralle M, Dani MA, Lange D, Wouters FS (2008) pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47:13115–13126CrossRefPubMedGoogle Scholar
  14. Evers TH, van Dongen EMWM, Faesen AC, Meijer EW, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible linkers. Biochemistry 45:13183–13192CrossRefPubMedGoogle Scholar
  15. Festy F, Ameer-Beg SM, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. J R Soc Mol Biosyst 3:381–391CrossRefGoogle Scholar
  16. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75CrossRefGoogle Scholar
  17. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRefPubMedGoogle Scholar
  18. Grinvald A, Haas E, Steinberg IZ (1972) Evaluation of distribution of distances between energy donors and acceptors by fluorescence decay. Proc Natl Acad Sci USA 69:2273–2277CrossRefPubMedGoogle Scholar
  19. Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ (1975) Distribution of end-to-end distances of oligopeptides in solution as estimated by energy-transfer. Proc Natl Acad Sci USA 72:1807–1811CrossRefPubMedGoogle Scholar
  20. Heikal AA, Hess ST, Webb WW (2001) Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity. Chem Phys 274:37–55CrossRefGoogle Scholar
  21. Hess ST, Sheets ED, Wagenknecht-Wiesner A, Heikal AA (2003) Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells. Biophys J 85:2566–2580CrossRefPubMedGoogle Scholar
  22. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395CrossRefPubMedGoogle Scholar
  23. Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10:409–416CrossRefPubMedGoogle Scholar
  24. Jose M, Nair DK, Reissner C, Hartig R, Zuschratter W (2007) Photophysics of clomeleon by FLIM: discriminating excited state reactions along neuronal development. Biophys J 92:2237–2254CrossRefPubMedGoogle Scholar
  25. Kaminski C (2009) Quantitative fluorescence microscopy. J R Soc Interface 6:S1–S2CrossRefGoogle Scholar
  26. Kirber MT, Chen K, Keaney JF (2007) YFP photoconversion revisited: confirmation of the CFP-like species. Nat Methods 4:767–768CrossRefPubMedGoogle Scholar
  27. Kremers GJ, Hazelwood KL, Murphy CS, Davidson MW, Piston DW (2009) Photoconversion in orange and red fluorescent proteins. Nat Methods 6:355–358CrossRefPubMedGoogle Scholar
  28. Livesey AK, Brochon JC (1987) Analyzing the distribution of decay constants in pulse-fluorometry using the maximum-entropy method. Biophys J 52:693–706CrossRefPubMedGoogle Scholar
  29. Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PIH, Knop M (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction–diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9:1319–1326CrossRefPubMedGoogle Scholar
  30. Merola F, Rigler R, Holmgren A, Brochon JC (1989) Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry 28:3383–3398CrossRefPubMedGoogle Scholar
  31. Millington M, Grindlay GJ, Altenbach K, Neely RK, Kolch W, Bencina M, Read ND, Jones AC, Dryden DT, Magennis SW (2007) High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127:155–164CrossRefPubMedGoogle Scholar
  32. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefPubMedGoogle Scholar
  33. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140CrossRefPubMedGoogle Scholar
  34. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 5(Suppl):S1–S7Google Scholar
  35. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559CrossRefPubMedGoogle Scholar
  36. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877CrossRefPubMedGoogle Scholar
  37. Peter M, Ameer-Beg SM, Hughes MK, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88:1224–1237CrossRefPubMedGoogle Scholar
  38. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572CrossRefPubMedGoogle Scholar
  39. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  40. Suhling K, Siegel J, Phillips D, French PMW, Leveque-Fort S, Webb SE, Davis DM (2002) Imaging the environment of green fluorescent protein. Biophys J 83:3589–3595CrossRefPubMedGoogle Scholar
  41. Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939CrossRefPubMedGoogle Scholar
  42. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:67509–67544CrossRefGoogle Scholar
  43. Uskova MA, Borst JW, Hink MA, van Hoek A, Schots A, Klyachko NL, Visser AJWG (2000) Fluorescence dynamics of green fluorescent protein in AOT reversed micelles. Biophys Chem 87:73–84CrossRefPubMedGoogle Scholar
  44. Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005) Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods 2:801CrossRefPubMedGoogle Scholar
  45. van den Berg PAW, van Hoek A, Walentas CD, Perham RN, Visser AJWG (1998) Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. Biophys J 74:2046–2058CrossRefPubMedGoogle Scholar
  46. van den Berg PAW, Mulrooney SB, Gobets B, van Stokkum IHM, van Hoek A, Williams CH, Visser AJWG (2001) Exploring the conformational equilibrium of E. coli thioredoxin reductase: characterization of two catalytically important states by ultrafast flavin fluorescence spectroscopy. Protein Sci 10:2037–2049CrossRefPubMedGoogle Scholar
  47. van Hoek A, Vos K, Visser AJWG (1987) Ultrasensitive time-resolved polarized fluorescence spectroscopy as a tool in biology and medicine. J Quant Electr 23:1812–1820CrossRefGoogle Scholar
  48. Varadi A, Rutter GA (2002) Green fluorescent protein calcium biosensors. Calcium imaging with GFP cameleons. Methods Mol Biol 183:255–264PubMedGoogle Scholar
  49. Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289–296CrossRefPubMedGoogle Scholar
  50. Villoing A, Ridhoir M, Cinquin B, Erard M, Alvarez L, Vallverdu G, Pernot P, Grailhe R, Merola F, Pasquier H (2008) Complex fluorescence of the cyan fluorescent protein: comparisons with the H148D variant and consequences for quantitative cell imaging. Biochemistry 47:12483–12492CrossRefPubMedGoogle Scholar
  51. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006:re2CrossRefPubMedGoogle Scholar
  52. Wlodarczyk J, Woehler A, Kobe F, Ponimaskin E, Zeug A, Neher E (2008) Analysis of FRET signals in the presence of free donors and acceptors. Biophys J 94:986–1000CrossRefPubMedGoogle Scholar
  53. Wu PG, Brand L (1992) Orientation factor in steady-state and time-resolved resonance energy-transfer measurements. Biochemistry 31:7939–7947CrossRefPubMedGoogle Scholar
  54. Wu PG, Rice KG, Brand L, Lee YC (1991) Differential flexibilities in 3 branches of an N-linked triantennary glycopeptide. Proc Natl Acad Sci USA 88:9355–9359CrossRefPubMedGoogle Scholar
  55. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  • A. J. W. G. Visser
    • 1
    • 2
    • 4
    Email author
  • S. P. Laptenok
    • 1
    • 3
  • N. V. Visser
    • 1
    • 3
  • A. van Hoek
    • 1
    • 3
  • D. J. S. Birch
    • 4
  • J.-C. Brochon
    • 5
  • J. W. Borst
    • 1
    • 2
  1. 1.Microspectroscopy CentreWageningen UniversityWageningenThe Netherlands
  2. 2.Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
  3. 3.Laboratory of BiophysicsWageningen UniversityWageningenThe Netherlands
  4. 4.Department of PhysicsUniversity of Strathclyde, Scottish Universities Physics Alliance, Photophysics GroupGlasgowUK
  5. 5.Laboratoire de Biotechnologies et de Pharmacologie Génétique AppliquéeEcole Normale Supérieure de CachanCachanFrance

Personalised recommendations