European Biophysics Journal

, Volume 38, Issue 6, pp 793–806 | Cite as

Spatial allelic imbalance of BCL2 genes and chromosome 18 territories in nonneoplastic and neoplastic cervical squamous epithelium

  • Thorsten Wiech
  • Stefan Stein
  • Victoria Lachenmaier
  • Eberhard Schmitt
  • Jutta Schwarz-Finsterle
  • Elisabeth Wiech
  • Georg Hildenbrand
  • Martin Werner
  • Michael Hausmann
Original Paper


Several studies suggest a correlation between genome architecture and gene function. To elucidate mechanisms of gene positioning during cell differentiation and malignant transformation we investigated the nuclear positions of the BCL2 alleles and chromosome 18 territories in different layers of nonneoplastic cervical squamous epithelium and cervical squamous carcinomas in relation to gene expression. Fluorescence in situ hybridization and three-dimensional (3D) image analysis using tissue sections revealed that one BCL2 allele was located more peripherally than the other one in nuclei of the basal layer of nonneoplastic epithelium. During terminal cell differentiation the outer BCL2 allele showed a shift towards the nuclear center. In BCL2-expressing carcinomas the inner BCL2 allele was located more peripherally compared with the basal layer of nonneoplastic epithelium. Our results suggest a functional relevance of unequal allelic BCL2 gene positioning and support the hypothesis that transcriptional BCL2 activation is associated with BCL2 relocation towards the nuclear periphery.


BCL2 gene domains Chromosome 18 territories 3D FISH Gene regulation Genome architecture Cervical cancer 



The authors thank Prof. Dr. Rainer Siebert, Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany for providing the BCL2 FISH probe and Mrs. Lieselotte Bokla for excellent technical assistance. The authors are also indebted to Prof. Dr. Christoph Cremer, Kirchhoff Institute of Physics, University of Heidelberg for his continuous support and stimulating discussions. Funding of the German Ministry of Education and Research (FKZ 13N8350 “COMBO-FISH” and FKZ 01IG07015G “Services@MediGRID”) to Michael Hausmann is gratefully acknowledged. Finally, stimulations of Prof. Dr. Paul I. Prinz Zippl, University of Vienna, Austria, are acknowledged.

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. Abney JR, Cutler B, Fillbach ML et al (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137:1459–1468. doi:10.1083/jcb.137.7.1459 PubMedCrossRefGoogle Scholar
  2. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. doi:10.1038/sj.onc.1210220 PubMedCrossRefGoogle Scholar
  3. Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–517. doi:10.1038/nrg2122 PubMedCrossRefGoogle Scholar
  4. Albiez H, Cremer M, Tiberi C et al (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14:707–733. doi:10.1007/s10577-006-1086-x PubMedCrossRefGoogle Scholar
  5. Bartova E, Kozubek S, Jirsova P et al (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139:76–89. doi:10.1016/S1047-8477(02)00560-9 PubMedCrossRefGoogle Scholar
  6. Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157. doi:10.1371/journal.pbio.0030157 PubMedCrossRefGoogle Scholar
  7. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138. doi:10.1371/journal.pbio.0040138 PubMedCrossRefGoogle Scholar
  8. Bridger JM, Boyle S, Kill IR et al (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152. doi:10.1016/S0960-9822(00)00312-2 PubMedCrossRefGoogle Scholar
  9. Brown KE, Amoils S, Horn JM et al (2001) Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3:602–606. doi:10.1038/35078577 PubMedCrossRefGoogle Scholar
  10. Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439. doi:10.1016/S0092-8674(04)00448-9 PubMedCrossRefGoogle Scholar
  11. Chess A, Simon I, Cedar H et al (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834. doi:10.1016/S0092-8674(94)90562-2 PubMedCrossRefGoogle Scholar
  12. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. doi:10.1038/nrc883 PubMedCrossRefGoogle Scholar
  13. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301. doi:10.1038/35066075 PubMedCrossRefGoogle Scholar
  14. Cremer T, Kreth G, Koester H et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212PubMedGoogle Scholar
  15. Cremer M, Kupper K, Wagler B et al (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820. doi:10.1083/jcb.200304096 PubMedCrossRefGoogle Scholar
  16. Cremer T, Kupper K, Dietzel S et al (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol Cell 96:555–567. doi:10.1016/j.biolcel.2004.07.002 PubMedCrossRefGoogle Scholar
  17. Cremer T, Cremer M, Dietzel S et al (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316. doi:10.1016/ PubMedCrossRefGoogle Scholar
  18. Cremer M, Grasser F, Lanctôt C et al (2008) multicolour 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239. doi:10.1007/978-1-59745-406-3_15 PubMedCrossRefGoogle Scholar
  19. Dundr M, Ospina JK, Sung MH et al (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103. doi:10.1083/jcb.200710058 PubMedCrossRefGoogle Scholar
  20. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417. doi:10.1038/nature05916 PubMedCrossRefGoogle Scholar
  21. Gandhi MS, Stringer JR, Nikiforova MN et al (2009) Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells. Genes Chromosomes Cancer 48:222–228. doi:10.1002/gcc.20639 PubMedCrossRefGoogle Scholar
  22. Hagemann T, Bozanovic T, Hooper S et al (2007) Molecular profiling of cervical cancer progression. Br J Cancer 96:321–328. doi:10.1038/sj.bjc.6603543 PubMedCrossRefGoogle Scholar
  23. Harmon B, Sedat J (2005) Cell-by-cell dissection of gene expression and chromosomal interactions reveals consequences of nuclear reorganization. PLoS Biol 3:e67. doi:10.1371/journal.pbio.0030067 PubMedCrossRefGoogle Scholar
  24. Hewitt SL, High FA, Reiner SL et al (2004) Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol 34:3604–3613. doi:10.1002/eji.200425469 PubMedCrossRefGoogle Scholar
  25. Jelinic P, Shaw P (2007) Loss of imprinting and cancer. J Pathol 211:261–268. doi:10.1002/path.2116 PubMedCrossRefGoogle Scholar
  26. Kosak ST, Groudine M (2004) Form follows function: the genomic organization of cellular differentiation. Genes Dev 18:1371–1384. doi:10.1101/gad.1209304 PubMedCrossRefGoogle Scholar
  27. Kosak ST, Skok JA, Medina KL et al (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296:158–162. doi:10.1126/science.1068768 PubMedCrossRefGoogle Scholar
  28. Kosak ST, Scalz D, Alworth SV et al (2007) Coordinate gene regulation during hematopoiesis is related to genomic organization. PLoS Biol 5:e309. doi:10.1371/journal.pbio.0050309 PubMedCrossRefGoogle Scholar
  29. Kozubek S, Lukasova E, Jirsova P et al (2002) 3D Structure of the human genome: order in randomness. Chromosoma 111:321–331. doi:10.1007/s00412-002-0210-8 PubMedCrossRefGoogle Scholar
  30. Kupper K, Kolbi A, Biener D et al (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306. doi:10.1007/s00412-007-0098-4 PubMedCrossRefGoogle Scholar
  31. Lanctôt C, Cheutin T, Cremer M et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115. doi:10.1038/nrg2041 PubMedCrossRefGoogle Scholar
  32. Lelievre SA, Weaver VM, Nickerson JA et al (1998) Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA 95:14711–14716. doi:10.1073/pnas.95.25.14711 PubMedCrossRefGoogle Scholar
  33. Mahy NL, Perry PE, Gilchrist S et al (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589. doi:10.1083/jcb.200111071 PubMedCrossRefGoogle Scholar
  34. Milani L, Gupta M, Andersen M et al (2007) Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res 35:e34. doi:10.1093/nar/gkl1152 PubMedCrossRefGoogle Scholar
  35. Misteli T (2008) Nuclear order out of chaos. Nature 456:333–334. doi:10.1038/456333a PubMedCrossRefGoogle Scholar
  36. Neusser M, Schubel V, Koch A et al (2007) Evolutionarily conserved, cell type or species specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116:307–320. doi:10.1007/s00412-007-0099-3 PubMedCrossRefGoogle Scholar
  37. Ozalp SS, Yalcin OT, Tanir HM et al (2002) Bcl-2 expression in preinvasive and invasive cervical lesions. Eur J Gynaecol Oncol 23:419–422PubMedGoogle Scholar
  38. Parada LA, McQueen PG, Munson PJ et al (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12:1692–1697. doi:10.1016/S0960-9822(02)01166-1 PubMedCrossRefGoogle Scholar
  39. Ragoczy T, Bender MA, Telling A et al (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457. doi:10.1101/gad.1419506 PubMedCrossRefGoogle Scholar
  40. Rauch J, Knoch TA, Solovei I et al (2008) Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei. Differentiation 76:66–82PubMedGoogle Scholar
  41. Scheuermann MO, Tajbakhsh J, Kurz A et al (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279. doi:10.1016/j.yexcr.2004.08.031 PubMedCrossRefGoogle Scholar
  42. Schmid M, Arib G, Laemmli C et al (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21:379–391. doi:10.1016/j.molcel.2005.12.012 PubMedCrossRefGoogle Scholar
  43. Sexton T, Schober H, Fraser P et al (2007) Gene regulation through nuclear organization. Nat Struct Mol Biol 14:1049–1055. doi:10.1038/nsmb1324 PubMedCrossRefGoogle Scholar
  44. Sobin LH, Wittekind C (2002) TNM classification of malignant tumours. Wiley, New YorkGoogle Scholar
  45. Sokal RR, Rohlf FJ (1981) Biometry. W.H. Freeman, New York, pp 440–445Google Scholar
  46. Solovei I, Cavallo A, Schermelleh L et al (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23. doi:10.1006/excr.2002.5513 PubMedCrossRefGoogle Scholar
  47. Soutoglou E, Misteli T (2007) Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 17:435–442. doi:10.1016/j.gde.2007.08.004 PubMedCrossRefGoogle Scholar
  48. Stein S (2006) Quantifizierung der dreidimensionalen Mikroarchitektur von Genomelementen nach spezifischer Fluoreszenzmarkierung in fixierten und vitalen Zellen. Ph.D. Thesis, Faculty of Physics and Astronomy, University of HeidelbergGoogle Scholar
  49. Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778. doi:10.1038/nature04845 PubMedCrossRefGoogle Scholar
  50. Tanabe H, Habermann FA, Solovei I et al (2002) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45. doi:10.1016/S0027-5107(02)00077-5 PubMedGoogle Scholar
  51. Watanabe D, Barlow DP (1996) Random and imprinted monoallelic expression. Genes Cells 1:795–802. doi:10.1046/j.1365-2443.1996.d01-276.x PubMedCrossRefGoogle Scholar
  52. Wells M, Östor AG, Crum CP (2003) Epithelial tumours. In: Tavassoli FA, Devilee P (eds) Pathology and genetics of tumours of the breast and female genital organs. IARC press, Lyon, pp 262–279Google Scholar
  53. Wiech T, Timme S, Riede F et al (2005) Human archival tissues provide a valuable source for the analysis of spatial genome organization. Histochem Cell Biol 123:229–238. doi:10.1007/s00418-005-0768-3 PubMedCrossRefGoogle Scholar
  54. Williams RR, Azuara V, Perry P et al (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119:132–140. doi:10.1242/jcs.02727 PubMedCrossRefGoogle Scholar
  55. Yang PK, Kuroda MI (2007) Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell 128:777–786. doi:10.1016/j.cell.2007.01.032 PubMedCrossRefGoogle Scholar
  56. Youn CK, Cho HJ, Kim SH et al (2005) Bcl-2 expression suppresses mismatch repair activity through inhibition of E2F transcriptional activity. Nat Cell Biol 7:137–147. doi:10.1038/ncb1215 PubMedCrossRefGoogle Scholar
  57. Zink D, Cremer T, Saffrich R et al (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251. doi:10.1007/s004390050686 PubMedCrossRefGoogle Scholar
  58. Zink D, Amaral MD, Englmann A et al (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825. doi:10.1083/jcb.200404107 PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  • Thorsten Wiech
    • 1
  • Stefan Stein
    • 2
  • Victoria Lachenmaier
    • 1
  • Eberhard Schmitt
    • 2
  • Jutta Schwarz-Finsterle
    • 2
  • Elisabeth Wiech
    • 1
  • Georg Hildenbrand
    • 2
  • Martin Werner
    • 1
  • Michael Hausmann
    • 1
    • 2
  1. 1.Institute of PathologyUniversity Hospital FreiburgFreiburgGermany
  2. 2.Kirchhoff Institute of PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations