European Biophysics Journal

, Volume 39, Issue 7, pp 1057–1068 | Cite as

Salt bridges in the miniature viral channel Kcv are important for function

  • Brigitte Hertel
  • Sascha Tayefeh
  • Thomas Kloss
  • Jennifer Hewing
  • Manuela Gebhardt
  • Dirk Baumeister
  • Anna Moroni
  • Gerhard ThielEmail author
  • Stefan M. Kast
Original Paper


The viral potassium channel Kcv comprises only 94 amino acids, which represent the pore module of more complex K+ channels. As for Kir-type channels, Kcv also has a short N-terminal helix exposed to the cytoplasm, upstream of the first transmembrane domain. Here we show that this helix is relevant for Kcv function. The presence of charged amino acids, which form dynamic inter- and intra-subunit salt bridges is crucial. Electrophysiological measurements, yeast rescue experiments and molecular dynamics simulations show that mutants in which the critical salt bridge formation is impaired have no or reduced channel activity. We conclude that these salt bridges destabilise the complexation of K+ ions by negative charges on the inner transmembrane domain at the entrance into the cavity. This feature facilitates a continuous and coordinated transfer of ions between the cavity and the cytoplasm for channels without the canonical bundle crossing.


Salt bridge Kcv-channel Channel gating K+ channel MD simulation 

List of abbreviations




Green fluorescent protein


Molecular dynamic



This work was supported in part by the Deutsche Forschungsgemeinschaft (to G. T. and S. M. K), GrK1114 (to G.T.), Fonds der Chemischen Industrie (to S. M. K.) the Adolf-Messer-Stiftung (to S. M. K.) and the European Drug Initiative on Channels and Transporters (EDICT) project EU FP7 (201924) to A.M. We are grateful to D. Herten and P. Heinlein for help with microscopy (Bioquant, Heidelberg). Computer time was provided on IBM Regatta systems at the Hochschulrechenzentrum Darmstadt and at the Forschungszentrum Jülich. Yeast strains were generously provided by Dr. D. Minor (UCSF).


  1. Alam A, Jiang Y (2009) High-resolution structure of the open NaK channel. Nat Struct Mol Biol 16:30–34. doi: 10.1038/nsmb.1531 CrossRefPubMedGoogle Scholar
  2. Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740. doi: 10.1073/pnas.89.9.3736 CrossRefPubMedGoogle Scholar
  3. Balss J, Mehmel M, Baumeister D, Hertel B, Delaroque N, Chatelain FC, Minor DJ, VanEtten JL, Moroni A, Thiel G (2008) Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc Natl Acad Sci USA 105:12313–12318. doi: 10.1073/pnas.0805709105 CrossRefPubMedGoogle Scholar
  4. Beckstein O, Biggin PC, Bond P, Bright JN, Domen C, Grottesi A, Holyoake J, Sansom MSP (2003) Ion channel gating: insight via molecular simulations. FEBS 555:85–90. doi: 10.1016/S0014-5793(03)01151-7 CrossRefGoogle Scholar
  5. Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101:7821–7826. doi: 10.1021/jp971083h CrossRefGoogle Scholar
  6. Bolte S, Cordelières FP (2007) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x CrossRefGoogle Scholar
  7. Brickmann J, Goetze T, Heiden W, Moeckel G, Reiling S, Vollhardt H, Zachmann C-D (1995) Interactive visualization of molecular scenarios with MOLCAD/SYBYL. In: Bowie JE (ed) Data visualisation in molecular science: tools for insight and innovation. Addison-Wesley, Reading, pp 83–97Google Scholar
  8. Cordero-Morales JF, Jogini V, Lewis A, Vásquez V, Cortes DM, Roux B, Perozo E (2007) Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 14:1062–1069. doi: 10.1038/nsmb1309 CrossRefPubMedGoogle Scholar
  9. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180. doi: 10.1085/jgp.117.2.165 CrossRefPubMedGoogle Scholar
  10. Craven K, Zagotta WN (2004) Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J Gen Physiol 124:663–677. doi: 10.1085/jgp.200409178 CrossRefPubMedGoogle Scholar
  11. Domene C, Bond PJ, Sansom MSP (2003) Membrane protein simulations: ion channels and bacterial outer membrane proteins. Adv Protein Chem 66:159–193. doi: 10.1016/S0065-3233(03)66005-5 CrossRefPubMedGoogle Scholar
  12. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–76. doi: 10.1126/science.280.5360.69 CrossRefPubMedGoogle Scholar
  13. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. doi: 10.1063/1.470117 CrossRefGoogle Scholar
  14. Gazzarrini S, Van Etten JL, DiFrancesco D, Thiel G, Moroni A (2002) Voltage dependence of virus-encoded miniature K+ channel Kcv. J Membr Biol 187:15–25. doi: 10.1007/s00232-001-0147-5 CrossRefPubMedGoogle Scholar
  15. Gazzarrini S, Kang M, Van Etten JL, Tayefeh S, Kast SM, DiFrancesco D, Thiel G, Moroni A (2004) Long-distance interactions within the potassium channel pore are revealed by molecular diversity of viral proteins. J Biol Chem 279:28443–28449. doi: 10.1074/jbc.M401184200 CrossRefPubMedGoogle Scholar
  16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100. doi: 10.1007/BF00656997 CrossRefPubMedGoogle Scholar
  17. Hertel B, Tayefeh S, Mehmel M, Kast SM, Van Etten J, Moroni A, Thiel G (2006) Elongation of outer transmembrane domain alters function of miniature K+ channel Kcv. J Membr Biol 210:21–29. doi: 10.1007/s00232-005-7026-4 CrossRefPubMedGoogle Scholar
  18. Hille B (1992) Ionic channels of excitable membranes. Sinauer, SunderlandGoogle Scholar
  19. Hong H, Szabo G, Tamm LK (2006) Electrostatic couplings in OmpA ion-channel gating suggests mechanism for pore opening. Nat Chem Biol 2:627–635. doi: 10.1038/nchembio827 CrossRefPubMedGoogle Scholar
  20. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. doi: 10.1016/0263-7855(96)00018-5 CrossRefPubMedGoogle Scholar
  21. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526. doi: 10.1038/417523a CrossRefPubMedGoogle Scholar
  22. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi: 10.1006/jcph.1999.6201 CrossRefGoogle Scholar
  23. Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K + ion conductance through Kv1.2. Biophys J 91:72–74. doi: 10.1529/biophysj.106.091926 CrossRefGoogle Scholar
  24. Kovalenko A, Hirata F (1998) Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem Phys Lett 290:237–244. doi: 10.1016/S0009-2614(98)00471-0 CrossRefGoogle Scholar
  25. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926. doi: 10.1126/science.1085028 CrossRefPubMedGoogle Scholar
  26. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK F, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modelling and dynamics. Studies of proteins. J Phys Chem B 102:3586–3616. doi: 10.1021/jp973084f CrossRefGoogle Scholar
  27. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65. doi: 10.1016/S0014-5793(03)01104-9 CrossRefPubMedGoogle Scholar
  28. Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. doi: 10.1146/annurev.biophys.29.1.291 CrossRefPubMedGoogle Scholar
  29. Moroni A, Thiel G (2006) Flip-flopping salt bridges gate an ion channel. Nat Chem Biol 2:572–573. doi: 10.1038/nchembio1106-572 CrossRefPubMedGoogle Scholar
  30. Moroni A, Viscomi C, Sangiorgio V, Pagliuca C, Meckel T, Horvath F, Gazzarrini S, Valbuzzi P, Van Etten JL, DiFrancesco D, Thiel G (2002) The short N-terminus is required for functional expression of the virus-encoded miniature K+ channel Kcv. FEBS Lett 530:65–69. doi: 10.1016/S0014-5793(02)03397-5 CrossRefPubMedGoogle Scholar
  31. Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26:4005–4015. doi: 10.1038/sj.emboj.7601828 CrossRefPubMedGoogle Scholar
  32. Pagliuca C, Goetze TA, Wagner R, Thiel G, Moroni A, Parcej D (2007) Molecular properties of Kcv, a viral-encoded K+ channel. Biochem 46:1079–1090. doi: 10.1021/bi061530w CrossRefGoogle Scholar
  33. Plugge B, Gazzarrini S, Nelson M, Cerana R, Van Etten JL, Derst C, DiFrancesco D, Moroni A, Thiel G (2000) A potassium channel protein encoded by chlorella virus PBCV-1. Science 287:1641–1644. doi: 10.1126/science.287.5458.1641 CrossRefPubMedGoogle Scholar
  34. Rapedius M, Fowler PW, Shang L, Sansom MSP, Tucker SJ, Baukrowitz T (2007a) H Bonding at the helix-bundle crossing controls gating in Kir. Neurone 16:602–614. doi: 10.1016/j.neuron.2007.07.026 CrossRefGoogle Scholar
  35. Rapedius M, Payner JJ, Payneter, Fowler PW, Shang L, Sansom MSP (2007b) Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-bonding at the helix bundle crossing. Channels 1:327–330Google Scholar
  36. Roux B, Schulten K (2004) Computational studies of membrane channels. Structure 12:1343–1351. doi: 10.1016/j.str.2004.06.013 CrossRefPubMedGoogle Scholar
  37. Roux B, Allen T, Bernéche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37:15–103. doi: 10.1017/S0033583504003968 CrossRefPubMedGoogle Scholar
  38. Schlenkrich M, Brickmann J, MacKerell AD Jr, Karplus M (1996) An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In: Merz KM, Roux B (eds) Biological membranes: a molecular perspective from computation and experiment. Birkhäuser, Boston, pp 31–81Google Scholar
  39. Shi N, Ye S, Alam A, Chen LP, Jiang YX (2006) Atomic structure of a Na+- and K+-conducting channel. Nature 440:570–574. doi: 10.1038/nature04508 CrossRefPubMedGoogle Scholar
  40. Tayefeh S, Kloss T, Thiel G, Hertel B, Moroni A, Kast SM (2007) Molecular dynamics simulation study of the cytosolic mouth in Kcv-type potassium channels. Biochem 46:4826–4839. doi: 10.1021/bi602468r CrossRefGoogle Scholar
  41. Tayefeh S, Kloss T, Kreim M, Gebhardt M, Baumeister D, Hertel B, Richter C, Schwalbe H, Moroni A, Thiel G, Kast SM (2009) Model development for the viral potassium channel. Biophys J 96:485–498. doi: 10.1016/j.bpj.2008.09.050 CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  • Brigitte Hertel
    • 1
  • Sascha Tayefeh
    • 1
    • 2
  • Thomas Kloss
    • 2
  • Jennifer Hewing
    • 1
  • Manuela Gebhardt
    • 1
  • Dirk Baumeister
    • 1
  • Anna Moroni
    • 3
  • Gerhard Thiel
    • 1
    Email author
  • Stefan M. Kast
    • 2
  1. 1.Institute for BotanyDarmstadtGermany
  2. 2.Eduard-Zintl-Institut für Anorganische und Physikalische ChemieDarmstadtGermany
  3. 3.Department of General Physiology and BiochemistryUniversità degli Studi di MilanoMilanItaly

Personalised recommendations