Advertisement

European Biophysics Journal

, Volume 39, Issue 6, pp 877–888 | Cite as

Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways

  • Marta Di CarloEmail author
Review

Abstract

Amyloid beta peptide (Aβ) is the major component of amyloid plaques in the brain of individuals affected by Alzheimer’s disease (AD). The formation of the plaques is due to an overproduction of Aβ by APP processing, its precursor, and to its ability to convert under specific conditions from its soluble form into highly ordered fibrillar aggregates. Although neuronal degeneration occurs near the amyloid plaques, some studies have suggested that intermediates such as protofibrils or simple oligomers are also involved in AD pathogenesis and even appear to be the more dangerous species in the onset of the pathology. Further, toxic properties of aggregates of different size have been investigated and the obtained results support the hypothesis that different aggregate sizes can induce different degeneration pathways. In the present review some of the knowledge about the biochemical routes of Aβ processing and production and the relationship among Aβ and oxidative stress, metal homeostasis, inflammatory process, and cell death are summarized. Moreover, current strategies addressing both fibrillogenesis process and different Aβ altered biochemical pathways utilized for therapies are described.

Keywords

Beta amyloid Fibrillogenesis Apoptosis Oxidative stress Inflammation 

Notes

Acknowledgments

I wish to thank Dr. Daniela Giacomazza for critical reading of manuscript.

References

  1. Akiyama H, Barger S, Barnum S, Bradt C et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421. doi: 10.1016/S0197-4580(00)00124-X PubMedCrossRefGoogle Scholar
  2. Atwood CS, Obrenovich ME, Liu T et al (2003) Amyloid beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res 43:1–46. doi: 10.1016/S0165-0173(03)00174-7 CrossRefGoogle Scholar
  3. Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by Vitamin E. Free Radic Biol Med 37:325–338. doi: 10.1016/j.freeradbiomed.2004.04.007 PubMedCrossRefGoogle Scholar
  4. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:443–449Google Scholar
  5. Behl C (2005) Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38:65–78. doi: 10.1007/0-387-23226-5_3 PubMedCrossRefGoogle Scholar
  6. Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, Wiltfang J, Esselmann H, De Strooper B (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96:732–742. doi: 10.1111/j.1471-4159.2005.03578.x PubMedCrossRefGoogle Scholar
  7. Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184. doi: 10.1074/jbc.M102223200 PubMedCrossRefGoogle Scholar
  8. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335. doi: 10.1073/pnas.222681699 PubMedCrossRefGoogle Scholar
  9. Bondì ML, Montana G, Craparo EF, Picone P, Capuano G, Di Carlo M, Giammona G (2009) Ferulic Acid-Loaded Lipid Nanostructures as Drug Delivery Systems for Alzheimer’s Disease: Preparation, Characterization and Cytotoxicity Studies. Curr Nanosci 5:26–32CrossRefGoogle Scholar
  10. Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382. doi: 10.1074/jbc.M400348200 PubMedCrossRefGoogle Scholar
  11. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554PubMedGoogle Scholar
  12. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214. doi: 10.1016/S0166-2236(03)00067-5 PubMedCrossRefGoogle Scholar
  13. Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259:514–516. doi: 10.1126/science.8424174 PubMedCrossRefGoogle Scholar
  14. Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 280:30001–30008. doi: 10.1074/jbc.M500052200 PubMedCrossRefGoogle Scholar
  15. Carrotta R, Di Carlo M, Manno M, Montana G, Picone P, Romancino D, San Biagio PL (2006) Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. FASEB J 20:1916–1924. doi: 10.1096/fj.06-5716fje PubMedCrossRefGoogle Scholar
  16. Chan MM, Huang HI, Fenton MR, Fong D (1998) In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55:1955–1962. doi: 10.1016/S0006-2952(98)00114-2 PubMedCrossRefGoogle Scholar
  17. Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208. doi: 10.1016/j.pathophys.2006.05.004 PubMedCrossRefGoogle Scholar
  18. Cherny RA, Atwood CS, Xilinas ME et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676. doi: 10.1016/S0896-6273(01)00317-8 PubMedCrossRefGoogle Scholar
  19. Chini MG, Scrima M, D’Ursi AM, Bifulco G (2008) Fibril aggregation inhibitory activity of the beta-sheet breaker peptides: a molecular docking approach. J Pept Sci Dec:16Google Scholar
  20. Chiti F, Dobson C (2006) Protein misfolding, functional amyloid and human disease. Annu Rev Biochem 75:333–366. doi: 10.1146/annurev.biochem.75.101304.123901 PubMedCrossRefGoogle Scholar
  21. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674. doi: 10.1038/360672a0 PubMedCrossRefGoogle Scholar
  22. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41PubMedGoogle Scholar
  23. Comai M, Dalla Serra M, Potrich C, Menestrina G (2003) Cu2+ and Zn2+ effects on beta-amyloid aggregation and structural conformation. Biophys J 84:337aGoogle Scholar
  24. Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933. doi: 10.1016/S0197-4580(96)00170-4 PubMedCrossRefGoogle Scholar
  25. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473. doi: 10.1074/jbc.M100175200 PubMedCrossRefGoogle Scholar
  26. D’Andrea MR, Nagele RG, Wang HY, Lee DH (2002) Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett 333:163–166. doi: 10.1016/S0304-3940(02)00875-3 PubMedCrossRefGoogle Scholar
  27. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300. doi: 10.1074/jbc.M500997200 PubMedCrossRefGoogle Scholar
  28. Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018. doi: 10.1523/JNEUROSCI.1189-06.2006 PubMedCrossRefGoogle Scholar
  29. Dickson DW (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 114:23–27PubMedGoogle Scholar
  30. Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457PubMedGoogle Scholar
  31. Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181. doi: 10.1046/j.1471-4159.2001.00012.x PubMedCrossRefGoogle Scholar
  32. Fezoui Y, Hartley DM, Harper JD, Khurana R, Walsh DM, Condron MM, Selkoe DJ, Lansbury PT Jr, Fink AL, Teplow DB (2000) An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7:166–178. doi: 10.3109/13506120009146831 PubMedCrossRefGoogle Scholar
  33. Findeis MA (2007) The role of amyloid beta peptide 42 in Alzhiemer’s disease. Pharmacol Ther 116:266–286. doi: 10.1016/j.pharmthera.2007.06.006 PubMedCrossRefGoogle Scholar
  34. Garzon-Rodigrez W, Sepulveda-Becerra M, Milton S, Glabe CG (1997) Soluble amyloid Abeta-(1-40) exists as a stable dimer at low concentrations. J Biol Chem 272:21037–21044CrossRefGoogle Scholar
  35. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 4:827–831. doi: 10.1038/nm0798-827 PubMedCrossRefGoogle Scholar
  36. Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145. doi: 10.1385/JMN:17:2:137 PubMedCrossRefGoogle Scholar
  37. Glenner G, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890. doi: 10.1016/S0006-291X(84)80190-4 PubMedCrossRefGoogle Scholar
  38. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18):10417–10422. doi: 10.1073/pnas.1834302100 PubMedCrossRefGoogle Scholar
  39. Haass C, Steiner H (2002) Alzheimer disease gamma-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol 12:556–562. doi: 10.1016/S0962-8924(02)02394-2 PubMedCrossRefGoogle Scholar
  40. Harper JD, Wong SS, Lieber CM, Lansbury PT (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol 4:951–959. doi: 10.1016/S1074-5521(97)90303-3 PubMedCrossRefGoogle Scholar
  41. Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2008) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis Dec:9Google Scholar
  42. Hetényi C, Körtvélyesi T, Penke B (2002) Mapping of possible binding sequences of two beta-sheet breaker peptides on beta amyloid peptide of Alzheimer’s disease. Bioorg Med Chem 10:1587–1593. doi: 10.1016/S0968-0896(01)00424-2 PubMedCrossRefGoogle Scholar
  43. Hock C, Konietzko U, Streffer JR et al (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554. doi: 10.1016/S0896-6273(03)00294-0 PubMedCrossRefGoogle Scholar
  44. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251. doi: 10.1016/0092-8674(93)80066-N PubMedCrossRefGoogle Scholar
  45. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci USA 100:6370–6375. doi: 10.1073/pnas.1237107100 PubMedCrossRefGoogle Scholar
  46. Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1977) Zinc-induced Alzheimer’s Ab1-40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470. doi: 10.1074/jbc.272.42.26464 CrossRefGoogle Scholar
  47. Huang TH, Yang DS, Plaskos NP, Go S, Yip CM, Fraser PE, Chakrabartty A (2000) Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. Biol Chem 297:73–87Google Scholar
  48. Ishige K, Takagi N, Imai T, Rausch WD, Kosuge Y, Kihara T, Kusama-Eguchi K, Ikeda H, Cools AR, Waddington JL, Koshikawa N, Ito Y (2007) Role of caspase-12 in amyloid beta-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods. J Pharmacol Sci 104:46–55. doi: 10.1254/jphs.FP0061533 PubMedCrossRefGoogle Scholar
  49. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–7469. doi: 10.1021/bi00069a001 PubMedCrossRefGoogle Scholar
  50. Juszczyk P, Kołodziejczyk AS, Grzonka Z (2009) FTIR spectroscopic studies on aggregation process of the beta-amyloid 11-28 fragment and its variants. J Pept Sci 15:23–29. doi: 10.1002/psc.1085 PubMedCrossRefGoogle Scholar
  51. Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 182:471–474. doi: 10.1016/S0300-483X(02)00457-2 CrossRefGoogle Scholar
  52. Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN (2002) Intracellular amyloid-beta 1-42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. Biol Chem 277:15666–15670. doi: 10.1074/jbc.M200887200 CrossRefGoogle Scholar
  53. Kim HC, Yamada K, Nitta A (2003) Immunocytochemical evidence that amyloid beta (1-42) impairs endogenous antioxidant systems in vivo. Neuroscience 119:399–419. doi: 10.1016/S0306-4522(02)00993-4 PubMedCrossRefGoogle Scholar
  54. Kirkitadze MD, Kowalska A (2005) Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim Pol 52:417–423PubMedGoogle Scholar
  55. Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci USA 83:503–507. doi: 10.1073/pnas.83.2.503 PubMedCrossRefGoogle Scholar
  56. Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, Spooner ET, Jiang L, Anwyl R, Selkoe DJ, Rowan MJ (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556–561. doi: 10.1038/nm1234 PubMedCrossRefGoogle Scholar
  57. Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens K, Corsmit E, Cruts M, Dermaut B, Wang R, Van Broeckhoven C (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27:686–695. doi: 10.1002/humu.20336 PubMedCrossRefGoogle Scholar
  58. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453. doi: 10.1073/pnas.95.11.6448 PubMedCrossRefGoogle Scholar
  59. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377PubMedGoogle Scholar
  60. Lindberg C, Hjorth E, Post C, Winblad B, Schultzberg M (2005) Cytokine production by a human microglial cell line: effects of beta-amyloid and alpha-melanocyte-stimulating hormone. Neurotox Res 8:267–276PubMedCrossRefGoogle Scholar
  61. Liu ST, Howlett G, Barrow CJ (1999) Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease. Biochemistry 38:9373–9378. doi: 10.1021/bi990205o PubMedCrossRefGoogle Scholar
  62. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129. doi: 10.1073/pnas.93.3.1125 PubMedCrossRefGoogle Scholar
  63. Lomakin A, Teplow D, Kirschner DA, Benedek GB (1997) Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA 94:7942–7947. doi: 10.1073/pnas.94.15.7942 PubMedCrossRefGoogle Scholar
  64. Luo Y, Hattori A, Munoz J, Qin Z, Roth G (1999) Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol 56:254–264PubMedGoogle Scholar
  65. Marchesi VT (2005) An alternative interpretation of the amyloid Abeta hypothesis with regard to the pathogenesis of Alzheimer’s disease. Proc Natl Acad Sci USA 102:9093–9098. doi: 10.1073/pnas.0503181102 PubMedCrossRefGoogle Scholar
  66. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:885–890. doi: 10.1073/pnas.82.12.4245 CrossRefGoogle Scholar
  67. Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159. doi: 10.1111/j.0959-9673.2005.00434.x PubMedCrossRefGoogle Scholar
  68. McGeer PL, McGerr EG (2001) Inflammation autotoxicity and Alzheimer’s disease. Neurobiol Aging 22:799–809. doi: 10.1016/S0197-4580(01)00289-5 PubMedCrossRefGoogle Scholar
  69. McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M et al (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269. doi: 10.1038/nm790 PubMedCrossRefGoogle Scholar
  70. Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S (2008) Identifying the minimal Cu and Zn binding site sequence in amyloid beta peptides. J Biol Chem 283:10784–10792. doi: 10.1074/jbc.M707109200 PubMedCrossRefGoogle Scholar
  71. Mohmmad AH, Wenk GL, Gramling M, Hauss-Wegrzyniak B, Butterfield DA (2004) APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer’s disease. Neurosci Lett 368:148–150. doi: 10.1016/j.neulet.2004.06.077 CrossRefGoogle Scholar
  72. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103. doi: 10.1038/47513 PubMedCrossRefGoogle Scholar
  73. Nunam J, Small DH (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483:6–10. doi: 10.1016/S0014-5793(00)02076-7 CrossRefGoogle Scholar
  74. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070. doi: 10.1016/j.neurobiolaging.2003.08.012 PubMedCrossRefGoogle Scholar
  75. Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun 21:336, 444Google Scholar
  76. Opazo C, Barria MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98. doi: 10.1023/A:1020795422185 PubMedCrossRefGoogle Scholar
  77. Picone P, Carrotta R, Montana G, Nobile MR, San Biagio PL, Di Carlo M (2009) Aβ oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 96:1–12CrossRefGoogle Scholar
  78. Praticò D (2008) Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci 1147:70–78PubMedCrossRefGoogle Scholar
  79. Saavedra L, Mohamed A, Ma V, Posse Kar, de Chaves S (2007) Internalization of beta-amyloid peptide by primary neurons in the absence of apolipoprotein E. J Biol Chem 282:35722–35732. doi: 10.1074/jbc.M701823200 PubMedCrossRefGoogle Scholar
  80. Sagi SA, Weggen S, Eriksen J, Golde TE, Koo EH (2003) The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. J Biol Chem 278:31825–31830. doi: 10.1074/jbc.M303588200 PubMedCrossRefGoogle Scholar
  81. Scapagnini G, Colombrita C, Amadio M, D’Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403. doi: 10.1089/ars.2006.8.395 PubMedCrossRefGoogle Scholar
  82. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. doi: 10.1038/22124 PubMedCrossRefGoogle Scholar
  83. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31Google Scholar
  84. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–20PubMedGoogle Scholar
  85. Sgarbossa A, Buselli D, Lenci F (2008) In vitro perturbation of aggregation processes in beta-amyloid peptides: a spectroscopic study. FEBS Lett 582:3288–3292. doi: 10.1016/j.febslet.2008.08.039 PubMedCrossRefGoogle Scholar
  86. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217. doi: 10.1196/annals.1352.010 PubMedCrossRefGoogle Scholar
  87. Sorenghan B, Kosmoski J, Glabe C (1994) Surfactant properties of Alzheimer’s A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 269:28551–28554Google Scholar
  88. Stellato F, Minestrina G, Dalla Serra M, Potrich C, Tomazzolli R, Meyer-Klaucke W, Morante S (2006) Metal binding in amyloid b-peptides shows intra- and inter-peptide coordination modes. Eur Biophys J 35:340–351. doi: 10.1007/s00249-005-0041-7 PubMedCrossRefGoogle Scholar
  89. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739. doi: 10.1006/jmbi.1997.1348 PubMedCrossRefGoogle Scholar
  90. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264:1336–1340. doi: 10.1126/science.8191290 PubMedCrossRefGoogle Scholar
  91. Suzuki K, Miura T, Takeuchi H (2001) Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid b-peptide. Biochem Biophys Res Commun 285:991–996. doi: 10.1006/bbrc.2001.5263 PubMedCrossRefGoogle Scholar
  92. Tateishi J (2000) Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals. Neuropathology 20:20–24. doi: 10.1046/j.1440-1789.2000.00296.x CrossRefGoogle Scholar
  93. Teplow DB (2006) Preparation of amyloid beta-protein for structural and functional studies. Methods Enzymol 413:20–33. doi: 10.1016/S0076-6879(06)13002-5 PubMedCrossRefGoogle Scholar
  94. Tycko R (2003) Insights into the amyloid folding problem from solid-state NMR. Biochemistry 42:3151–3159. doi: 10.1021/bi027378p PubMedCrossRefGoogle Scholar
  95. Vasto S, Moccheggiani E, Malavolta M et al (2007) Zn and inflammatory/immune response in aging. Ann N Y Acad Sci 1100:111–122. doi: 10.1196/annals.1395.009 PubMedCrossRefGoogle Scholar
  96. Vasto S, Candore G, Listi F et al (2008) Inflammation, genes and Zn in Alzheimer’s disease. Brain Res Brain Res Rev 58:96–105. doi: 10.1016/j.brainresrev.2007.12.001 CrossRefGoogle Scholar
  97. Verdier Y, Zarándi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248. doi: 10.1002/psc.573 PubMedCrossRefGoogle Scholar
  98. Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN (2004) The role of beta amyloid in Alzheimer’s disease: still a cause of everything or the only one who got caught? Pharmacol Res 50:397–409. doi: 10.1016/j.phrs.2003.12.028 PubMedCrossRefGoogle Scholar
  99. Walshe DM, Selkoe DJ (2007) Aβ oligomers a decade of discovery. J Neurochem 101:1172–1184. doi: 10.1111/j.1471-4159.2006.04426.x CrossRefGoogle Scholar
  100. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839. doi: 10.1021/bi001048s PubMedCrossRefGoogle Scholar
  101. Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, Agnaf OE, Hartley DM, Selkoe DJ (2005) Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 25:2455–2462. doi: 10.1523/JNEUROSCI.4391-04.2005 PubMedCrossRefGoogle Scholar
  102. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216. doi: 10.1038/35102591 PubMedCrossRefGoogle Scholar
  103. Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6:404–416. doi: 10.1038/nri1843 PubMedCrossRefGoogle Scholar
  104. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygenand nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29PubMedGoogle Scholar
  105. Wisniewski T, Ghiso J, Frangione B (1997) Biology of Aβ amyloid in Alzheimer’s disease. Neurobiol Dis 4:313–328. doi: 10.1006/nbdi.1997.0147 PubMedCrossRefGoogle Scholar
  106. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901. doi: 10.1074/jbc.M404751200 PubMedCrossRefGoogle Scholar
  107. Yao Z, Drieu K, Papadopoulos V (2001) The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res 889:181–190. doi: 10.1016/S0006-8993(00)03131-0 PubMedCrossRefGoogle Scholar
  108. Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM (2007a) Alzheimer’s disease: Mental plaque removal. J Biol Chem 28:23639–23644. doi: 10.1074/jbc.M704601200 CrossRefGoogle Scholar
  109. Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM (2007b) γ-Secretase substrate Concentration Modulates the Abeta42/Abeta40 Ratio: implications for Alzheimer’s disease. J Biol Chem 28:23639–23644. doi: 10.1074/jbc.M704601200 CrossRefGoogle Scholar
  110. Yoon KH, Lee J, Cho J (2004) Gossypin protects primary cultured rat cortical cells from oxidative stress- and beta-amyloid-induced toxicity. Arch Pharm Res 27:454–459. doi: 10.1007/BF02980089 PubMedCrossRefGoogle Scholar
  111. Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions. J Pineal Res 35:98–103. Al(III), Zn(II), Cu(II), Mn(II), Fe(II). doi: 10.1034/j.1600-079X.2003.00058.x Google Scholar
  112. Zhao BL, Li X, He RG, Cheng SJ, Xin WJ (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14:175–185PubMedGoogle Scholar
  113. Zhu X, Smith MA, Perry G, Aliev G (2004) Mitochondrial failures in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 19:345–352. doi: 10.1177/153331750401900611 PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  1. 1.Istituto di Biomedicina ed Immunologia Molecolare (IBIM)CNRPalermoItaly

Personalised recommendations