European Biophysics Journal

, Volume 39, Issue 3, pp 469–480 | Cite as

Solution structure of the major (Spy0128) and minor (Spy0125 and Spy0130) pili subunits from Streptococcus pyogenes

  • Alexandra S. Solovyova
  • Jonathan A. Pointon
  • Paul R. Race
  • Wendy D. Smith
  • Michael A. Kehoe
  • Mark J. Banfield
Original Paper

Abstract

Adhesion of the serotype M1 Streptococcus pyogenes strain SF370 to human tonsil explants and cultured keratinocytes requires extended polymeric surface structures called pili. In this important human pathogen, pili are assembled from three protein subunits: Spy0125, Spy0128 and Spy0130 through the action of sortase enzymes. For this study, the structural properties of these pili proteins have been investigated in solution. Spy0125 and Spy0128 display characteristics of globular, folded proteins. Circular dichroism suggests a largely β-sheet composition for Spy0128 and Spy0125; Spy0130 appears to contain little secondary structure. Each of the proteins adopts a monodisperse, monomeric state in solution as assessed by analytical ultracentrifugation. Further, small-angle X-ray scattering curves for Spy0125, Spy0128 and Spy0130 suggest each protein adopts an elongated shape, likely comprised of two domains, with similar maximal dimensions. Based on the scattering data, dummy atom models of each of the pili subunits have been reconstructed ab initio. This study provides the first insights into the structure of Streptococcus pyogenes minor pili subunits, and possible implications for protein function are discussed.

Keywords

Pili subunits Circular dichroism Analytical ultracentrifugation Small-angle X-ray scattering Dummy atom model Structural disorder 

References

  1. Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, Wilson JA, Hirst BH, Kehoe MA (2007) Pili mediate specific adhesion of Streptococcus pyogesnes to human tonsil and skin. Cell Microbiol 9:1822–1833. doi:10.1111/j.1462-5822.2007.00918.x CrossRefPubMedGoogle Scholar
  2. Ackerman CJ, Harnett MM, Harnett W, Kelly SM, Svergun DI, Byron O (2003) 19 A solution structure of the filarial nematode immunomodulatory protein, ES-62. Biophys J 84:489–500. doi:10.1016/S0006-3495(03)74868-1 CrossRefPubMedGoogle Scholar
  3. Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664. doi:10.1021/ja069124n CrossRefPubMedGoogle Scholar
  4. Boulin C, Kempf R, Koch MHJ, Mc Laughlin SM (1986) Data appraisal, evaluation and display for synchrotron radiation experiments: hardware and software. Nucl Instrum Methods A249:399–407Google Scholar
  5. Brown PH, Schuck P (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90:4651–4661. doi:10.1529/biophysj.106.081372 CrossRefPubMedGoogle Scholar
  6. Chalton DA, Musson JA, Flick-Smith H, Walker N, McGregor A, Lamb HK, Williamson ED, Miller J, Robinson JH, Lakey JH (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74:6624–6631. doi:10.1128/IAI.00437-06 CrossRefPubMedGoogle Scholar
  7. Courtney HS, Hasty DL, Dale JB (2002) Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann Med 34:77–87. doi:10.1080/07853890252953464 CrossRefPubMedGoogle Scholar
  8. Demeler B, Saber H (1998) Determination of molecular parameters by fitting sedimentation data to finite element solution of the Lamm equation. Biophys J 74:444–454. doi:10.1016/S0006-3495(98)77802-6 CrossRefPubMedGoogle Scholar
  9. Dramsi S, Caliot E, Bonne I, Guadagnini S, Prévost MC, Kojadinovic M, Lalioui L, Poyart C, Trieu-Cuot P (2006) Assembly and role of pili in group B streptococci. Mol Microbiol 60:1401–1413. doi:10.1111/j.1365-2958.2006.05190.x CrossRefPubMedGoogle Scholar
  10. Durchschlag H (1986) Specific volumes of biological macromolecules and some other molecules of biological interest. In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin, pp 45–128Google Scholar
  11. Edwards AM, Manetti AG, Falugi F, Zingaretti C, Capo S, Buccato S, Bensi G, Telford JL, Margarit I, Grandi G (2008) Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol 68:1378–1394. doi:10.1111/j.1365-2958.2008.06220.x CrossRefPubMedGoogle Scholar
  12. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New YorkGoogle Scholar
  13. de Garcia la Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730. doi:10.1016/S0006-3495(00)76630-6 CrossRefGoogle Scholar
  14. Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science 318:1625–1628. doi:10.1126/science.1145806 CrossRefPubMedGoogle Scholar
  15. Kehoe MA (1994) Cell-wall-associated proteins in Gram-positive bacteria. In: Ghuysen JM, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 217–261CrossRefGoogle Scholar
  16. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227. doi:10.1017/S0033583503003871 CrossRefPubMedGoogle Scholar
  17. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS—a Windows-PC based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282. doi:10.1107/S0021889803012779 CrossRefGoogle Scholar
  18. Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Cryst 34:33–41. doi:10.1107/S0021889800014126 CrossRefGoogle Scholar
  19. Lamm O (1929) Die Differentialgleichung der Ultrazentrifugierung. Ark Mater Astron Fys 21B:1–4Google Scholar
  20. Laue TM, Shah BD, Ridgeway TM, Pelletier S (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Analytical ultracentrifugation in biochemistry and polymer science. Redwood Press Ltd, Melksham, pp 90–125Google Scholar
  21. Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079. doi:10.1110/ps.0207702 CrossRefPubMedGoogle Scholar
  22. Longhi S, Receveur-Bréchot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S, Canard B (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648. doi:10.1074/jbc.M300518200 CrossRefPubMedGoogle Scholar
  23. Mandlik A, Das A, Ton-That H (2008a) The molecular switch that activates the cell wall anchoring step of pilus assembly in Gram-positive bacteria. Proc Natl Acad Sci USA 105:14147–14152. doi:10.1073/pnas.0806350105 CrossRefPubMedGoogle Scholar
  24. Mandlik A, Swierczynski A, Das A, Ton-That H (2008b) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40. doi:10.1016/j.tim.2007.10.010 CrossRefPubMedGoogle Scholar
  25. Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221. doi:10.1128/MMBR.70.1.192-221.2006 CrossRefPubMedGoogle Scholar
  26. Perez J, Vachette P, Russo D, Desmadril M, Durand D (2001) Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering. J Mol Biol 308:721–743. doi:10.1006/jmbi.2001.4611 CrossRefPubMedGoogle Scholar
  27. Petoukhov MV, Eady NA, Brown KA, Svergun DI (2002) Addition of missing loops and domains to protein models by x-ray solution scattering. Biophys J 83:3113–3125. doi:10.1016/S0006-3495(02)75315-0 CrossRefPubMedGoogle Scholar
  28. Proft T, Baker EN (2008) Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci. doi:10.1007/s00018-008-8477-4:-8
  29. Race PR, Solovyova AS, Banfield MJ (2007) Conformation of the EPEC Tir protein in solution: investigating the impact of serine phosphorylation at positions 434/463. Biophys J 93:586–596. doi:10.1529/biophysj.106.101766 CrossRefPubMedGoogle Scholar
  30. Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62:24–45. doi:10.1002/prot.20750 CrossRefPubMedGoogle Scholar
  31. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48. doi:10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  32. Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75:1503–1512. doi:10.1016/S0006-3495(98)74069-X CrossRefPubMedGoogle Scholar
  33. Schuck P (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320:104–124. doi:10.1016/S0003-2697(03)00289-6 CrossRefPubMedGoogle Scholar
  34. Scott JR, Zähner D (2006) Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol 62:2320–2330. doi:10.1111/j.1365-2958.2006.05279.x CrossRefGoogle Scholar
  35. Semenyuk AV, Svergun DI (1991) GNOM—a program package for small-angle scattering data processing. J Appl Crystallog 24:537–540CrossRefGoogle Scholar
  36. Sreerama N, Woody RW (2003) Structural composition of betaI- and betaII-proteins. Protein Sci 12:384–388. doi:10.1110/ps.0235003 CrossRefPubMedGoogle Scholar
  37. Svergun DI (1992) Determination of regularisation parameter in direct-transform methods using perceptual criteria. J Appl Cryst 25:495–503. doi:10.1107/S0021889892001663 CrossRefGoogle Scholar
  38. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886. doi:10.1016/S0006-3495(99)77443-6 CrossRefPubMedGoogle Scholar
  39. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756. doi:10.1110/ps.4210102 CrossRefPubMedGoogle Scholar
  40. Vachette P, Dainese E, Vasyliev VB, Di Muro P, Beltramini M, Svergun DI, De Filippis V, Salvato B (2002) A key structural role for active site type 3 copper ions in human ceruloplasmin. J Biol Chem 277:40823–40831. doi:10.1074/jbc.M207188200 CrossRefPubMedGoogle Scholar
  41. Viguera AR, Martínez JC, Filimonov VV, Mateo PL, Serrano L (1994) Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33:2142–2150. doi:10.1021/bi00174a022 CrossRefPubMedGoogle Scholar
  42. Volini M, Tobias P (1969) Circular dichroism studies of chymotrypsin and its derivatives. Correlation of changes in dichroic bands with deacylation. J Biol Chem 244:5105–5109PubMedGoogle Scholar
  43. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Cryst 36:860–864. doi:10.1107/S0021889803000268 CrossRefGoogle Scholar
  44. Wu H, Fives-Taylor PM (2001) Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Biol Med 12:101–115. doi:10.1177/10454411010120020101 CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  • Alexandra S. Solovyova
    • 1
  • Jonathan A. Pointon
    • 1
  • Paul R. Race
    • 1
  • Wendy D. Smith
    • 1
  • Michael A. Kehoe
    • 1
  • Mark J. Banfield
    • 2
  1. 1.Faculty of Medical Sciences, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of Biological ChemistryJohn Innes CentreNorwichUK

Personalised recommendations