European Biophysics Journal

, Volume 39, Issue 3, pp 457–468 | Cite as

Recombinantly produced hydrophobins from fungal analogues as highly surface-active performance proteins

  • Wendel WohllebenEmail author
  • Thomas Subkowski
  • Claus Bollschweiler
  • Bernhard von Vacano
  • Yaqian Liu
  • Wolfgang Schrepp
  • Ulf Baus
Original Paper


Hydrophobins are available from natural resources only in milligram amounts. BASF succeeded in a recombinant production process, up-scaled to pilot plant production in kilogram scale. Strain and protein optimization by modulation of gene expression and generation of fusion proteins finally leads to two class I hydrophobins called H*Protein A and H*Protein B. By analytical ultracentrifugation, we confirm that the self-association of H*Proteins in solution is governed by their sequence, because oligomerization is induced by the same mechanisms (pH > 6, temperature ≫ 5°C, concentration > 0.2 mg/ml) as for the well-known native hydrophobins SC3 and HFB II. Additionally, we established the triggering of structure formation by bridging with divalent ions and the stabilization of dimers and tetramers by monovalent ions or surfactants. This interplay with surfactants can be exploited synergistically: The capacity for emulsification of a 300 ppm standard surfactant solution is boosted from 0 to 100% by the addition of a mere 1 ppm of our new hydrophobins, with H*Protein A and H*Protein B having specific application profiles. This astonishing performance is rationalized by the finding that the same minute admixtures enhance significantly the interfacial elastic modulus, thus stabilizing interfaces against coalescence and phase separation.


Hydrophobin Recombinant Self-association Analytical ultracentrifugation Interface elasticity Emulsion 



Polymerase chain reaction

LB medium

Lysogeny broth medium


Linear alkylbenzene sulfonate


Analytical ultracentrifugation



We thank Monika Page and Werner Wacker for excellent laboratory support.

Supplementary material

249_2009_430_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 87 kb)


  1. Balbo A, Minor KH, Velikovsky CA, Mariuzza RA, Peterson CB, Schuck P (2005) Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Proc Natl Acad Sci USA 102:81–86. doi: 10.1073/pnas.0408399102 CrossRefPubMedGoogle Scholar
  2. Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6(12a):2382–2394CrossRefPubMedGoogle Scholar
  3. Cölfen H (2004) Analytical ultracentrifugation of nanoparticles. In: Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, pp 67–88Google Scholar
  4. Corvis Y, Brezesinski G, Rink R, Walcarius A, Van der Heyden A, Mutelet F, Rogalska E (2006) Analytical investigation of the interactions between SC3 hydrophobin and lipid layers: elaborating of nanostructured matrixes for immobilizing redox systems. Anal Chem 78:4850–4864. doi: 10.1021/ac0602064 CrossRefPubMedGoogle Scholar
  5. Cox AR, Cagnol F, Russell AB, Izzard MJ (2007) Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir 23:7995–8002. doi: 10.1021/la700451g CrossRefPubMedGoogle Scholar
  6. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OMH, Sonveaux N, Wosten HAB, Ruysschaert JM, Hadziioannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068. doi: 10.1016/S0006-3495(98)77912-3 CrossRefPubMedGoogle Scholar
  7. de Vocht ML, Reviakine I, Ulrich WP, Bergsma-Schutter W, Wosten HAB, Vogel H, Brisson A, Wessels JGH, Robillard GT (2002) Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci 11:1199–1205. doi: 10.1110/ps.4540102 CrossRefPubMedGoogle Scholar
  8. del Rio OI, Neumann AW (1997) Axisymmetric drop shape analysis: Computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J Colloid Interface Sci 196:136–147. doi: 10.1006/jcis.1997.5214 CrossRefGoogle Scholar
  9. Demeler B (2005) UltraScan 9.5—a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation. Techniques and methods. The Royal Society of Chemistry, Cambridge, pp 210–230Google Scholar
  10. Hamer JE, Talbot NJ (1998) Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 1:693–697. doi: 10.1016/S1369-5274(98)80117-3 CrossRefPubMedGoogle Scholar
  11. Hektor HJ (2005) Hydrophobins: proteins with potential. Curr Opin Biotechnol 16:434–439. doi: 10.1016/j.copbio.2005.05.004 CrossRefPubMedGoogle Scholar
  12. Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33. doi: 10.1006/fgbi.1997.1022 CrossRefPubMedGoogle Scholar
  13. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382:708–720. doi: 10.1016/j.jmb.2008.07.034 CrossRefPubMedGoogle Scholar
  14. Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896. doi: 10.1016/j.femsre.2005.01.004 CrossRefPubMedGoogle Scholar
  15. Lucassen-Reynders EH (1981) Surfactant science series: anionic surfactants. In: Physical chemistry of surfactant action, vol 11. Marcel Dekker, New York, pp 173–216Google Scholar
  16. Lugones LG, Wosten HAB, Birkenkamp KU, Sjollema KA, Zagers J, Wessels JGH (1999) Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol Res 103:635–640. doi: 10.1017/S0953756298007552 CrossRefGoogle Scholar
  17. Lumsdon SO, Green J, Stieglitz B (2005) Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids Surf B Biointerfaces 44:172–178PubMedGoogle Scholar
  18. Ma H, Snook LA, Tian C, Kaminskyj SGW, Dahms TES (2006) Fungal surface remodelling visualized by atomic force microscopy. Mycol Res 110(Part 8):879–886. doi: 10.1016/j.mycres.2006.06.010 CrossRefPubMedGoogle Scholar
  19. Ma A, Shan L, Wang N, Zheng L, Chen L, Xie B (2007) Characterization of a Pleurotus ostreatus fruiting body-specific hydrophobin gene, Po.hyd. J Basic Microbiol 47:317–324. doi: 10.1002/jobm.200710317 CrossRefPubMedGoogle Scholar
  20. Ma AM, Shan LJ, Wang HJ, Du ZP, Me BJ (2008) Partial characterization of a hydrophobin protein Po.HYD1 purified from the oyster mushroom Pleurotus ostreatus. World J Microbiol Biotechnol 24:501–507CrossRefGoogle Scholar
  21. Mächtle W, Börger L (2006) Analytical ultracentrifugation of polymers and nanoparticles. Springer, HeidelbergGoogle Scholar
  22. Myrvold R, Hansen FK (1998) Surface elasticity and viscosity from oscillating bubbles measured by automatic axisymmetric drop shape analysis. J Colloid Interface Sci 207:97–105. doi: 10.1006/jcis.1998.5745 CrossRefPubMedGoogle Scholar
  23. Ohnishi S, Tochio N, Tomizawa T, Akasaka R, Harada T, Seki E, Sato M, Watanabe S, Fujikura Y, Koshiba S, Terada T, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S (2008) Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily. Protein Sci 17:1531–1541. doi: 10.1110/ps.035329.108 CrossRefPubMedGoogle Scholar
  24. Penas MM, Rust B, Larraya LM, Ramirez L, Pisabarro AG (2002) Differentially regulated, vegetative-mycelium-specific hydrophobins of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 68:3891–3898. doi: 10.1128/AEM.68.8.3891-3898.2002 CrossRefPubMedGoogle Scholar
  25. Schuck P (2005) Diffusion-deconvoluted sedimentation coefficient distribution for the analysis of interacting and non-interacting protein mixtures. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation. Techniques and methods. The Royal Society of Chemistry, Cambridge, pp 26–49Google Scholar
  26. Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, Birkmann E, Panza G, Prusiner SB, Eigen M, Riesner D (2008) Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci USA 105:2409–2414. doi: 10.1073/pnas.0712036105 CrossRefPubMedGoogle Scholar
  27. Stroud PA, Goodwin JS, Butko P, Cannon GC, McCormick CL (2003) Experimental evidence for multiple assembled states of Sc3 from Schizophyllum commune. Biomacromolecules 4:956–967. doi: 10.1021/bm034045e CrossRefPubMedGoogle Scholar
  28. Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39:773–784. doi: 10.1016/j.micron.2007.08.003 CrossRefPubMedGoogle Scholar
  29. van der Vegt W, van der Mei HC, Wosten HAB, Wessels JGH, Busscher HJ (1996) A comparison of the surface activity of the fungal hydrophobin SC3p with those of other proteins. Biophys Chem 57:253–260CrossRefPubMedGoogle Scholar
  30. Van Wetter MA, Wosten HAB, Wessels JGH (2000) SC3 and SC4 hydrophobins have distinct roles in formation of aerial structures in dikaryons of Schizophyllum commune. Mol Microbiol 36:201–210. doi: 10.1046/j.1365-2958.2000.01848.x CrossRefPubMedGoogle Scholar
  31. Walker N, Marcinowski S, Hillen H, Mächtle W, Jones Y, Stuart D (1990) Crystallization of human tumor necrosis factor. J Cryst Growth 100:168–179CrossRefGoogle Scholar
  32. Wang XQ, Graveland-Bikker JF, De Kruif CG, Robillard GT (2004) Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly. Protein Sci 13:810–821CrossRefPubMedGoogle Scholar
  33. Wenta N, Strauss H, Meyer S, Vinkemeier U (2008) Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci USA 105:9238–9243CrossRefPubMedGoogle Scholar
  34. Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–457Google Scholar
  35. Wessels JGH (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45CrossRefPubMedGoogle Scholar
  36. Wessels JGH (2000) Hydrophobins, unique fungal proteins. Mycologist 14:153–159CrossRefGoogle Scholar
  37. Whiteford JR, Spanu PD (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391–400CrossRefGoogle Scholar
  38. Wiesehan K, Stohr J, Nagel-Steger L, van Groen T, Riesner D, Willbold D (2008) Inhibition of cytotoxicity and amyloid fibril formation by a D-amino acid peptide that specifically binds to Alzheimer’s disease amyloid peptide. Protein Eng Des Sel 21:241–246CrossRefPubMedGoogle Scholar
  39. Wosten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646CrossRefPubMedGoogle Scholar
  40. Wosten HAB, Van Wetter MA, Lugones LG, Van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  • Wendel Wohlleben
    • 1
    Email author
  • Thomas Subkowski
    • 2
  • Claus Bollschweiler
    • 2
  • Bernhard von Vacano
    • 1
  • Yaqian Liu
    • 1
  • Wolfgang Schrepp
    • 1
  • Ulf Baus
    • 3
  1. 1.Polymer Physics ResearchBASF SELudwigshafenGermany
  2. 2.Fine Chemicals ResearchBASF SELudwigshafenGermany
  3. 3.New TechnologiesBASF SELudwigshafenGermany

Personalised recommendations