European Biophysics Journal

, Volume 38, Issue 5, pp 601–611 | Cite as

Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

  • Chih-Yuan Tseng
  • Chun-Ping Yu
  • H. C. Lee
Original Paper


In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob in human, bovine spongiform encephalopathy in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.


Prion Template-assistance model Transient interaction Molecular dynamics simulation 



This work is partially supported by grants 93-2811-B-008-001 and 94-2112-M-008-013 from the National Science Council, Taiwan, ROC. We are grateful to the National Center for High-performance Computing for computer time and facilities. CYT appreciates technical help from HT Chen on the extraction of simulation data.


  1. Aguzzi A, Sigurdson C, Heikenwaelder M (2008a) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40PubMedCrossRefGoogle Scholar
  2. Aguzzi A, Baumann F, Bremer J (2008b) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477PubMedCrossRefGoogle Scholar
  3. Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M (2006) Metadynamics simulation of prion protein: β-structure stability and the early stages of misfolding. J Am Chem Soc 128:2705–2710PubMedCrossRefGoogle Scholar
  4. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  5. Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein blobular domain. J Biol Chem 278:35592–35596PubMedCrossRefGoogle Scholar
  6. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling S, Wang B, Woods R (2005) The AMBER biomolecular simulation programs. J Comput Chem 26:1668–1688PubMedCrossRefGoogle Scholar
  7. Castilla J, Saá P, Hetz C, Soto C (2006) In vitro generation of infectious scrapie prions. Cell 121:195–206CrossRefGoogle Scholar
  8. DeLano WL (2002) PyMOL molecular graphics system. DeLano Scientific, San Carlos.
  9. DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci USA 101:2293–2298PubMedCrossRefGoogle Scholar
  10. DeMarco ML, Daggett V (2007) Molecular mechanism for low pH triggered misfolding of the human prion protein. Biochem 46:3045–3054CrossRefGoogle Scholar
  11. Derreumaux P (2001) Evidence that the 127–164 region of prion proteins has two equi-energetics conformations with β or α features. Biophys J 81:1657–1665PubMedCrossRefGoogle Scholar
  12. Dima RI, Thirumalai D (2004) Probing the instabilities in the dynamics of helical fragments from mouse PrPC. Proc Natl Acad Sci USA 101:15335–15340PubMedCrossRefGoogle Scholar
  13. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer E, Rezaei H, Knossow M (2004) Insight into the PrPC→PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci USA 101:10254–10259PubMedCrossRefGoogle Scholar
  14. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  15. Guilbert C, Ricard F, Smith JC (2000) Dynamic simulation of the mouse prion protein. Biopolymers 54:406–415PubMedCrossRefGoogle Scholar
  16. Harris DA (1999) Cellular biology of prion diseases. Clin Microbiol Rev 12:429–444PubMedGoogle Scholar
  17. Horiuchi M, Caughey B (1999) Prion protein interconversions and the transmissible spongiform encephalopathies. Struct Fold Des 7:R231–R240CrossRefGoogle Scholar
  18. Jackson GS, Clarke AR (2000) Mammalian prion proteins. Curr Opin Struct Biol 10:69–74PubMedCrossRefGoogle Scholar
  19. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bond and geometrical features. Biopolymers 22:2577–2637PubMedCrossRefGoogle Scholar
  20. Kozin SA, Bertho G, Mazur AK, Rabesona H, Girault JP, Haertie T, Takahashi M, Debey P, Hoa GHB (2001) Sheep prion protein synthetic peptide spanning helix 1 and β- strand 2 (Residue 142–166) shows β-hairpin structure in solution. J Biol Chem 49:46364–46370CrossRefGoogle Scholar
  21. Levy Y, Becker OM (2002) Conformational polymorphism of wild-type and mutant prion proteins: energy landscape analysis. Proteins 47:458–468PubMedCrossRefGoogle Scholar
  22. Levy Y, Hanan E, Solomon B, Becker OM (2001) Helix-coil transition of PrP106-126: molecular dynamic study. Proteins 45:382–396PubMedCrossRefGoogle Scholar
  23. Lindahl E, Hess B, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  24. Malolepsza E, Boniecki M, Kolinski A, Piela L (2005) Theoretical model of prion propagation: a misfolded protein induces misfolding. Proc Natl Acad Sci USA 102:7835–7840PubMedCrossRefGoogle Scholar
  25. Megy S, Bertho G, Kozin SA, Deby P, Hoa GHB, Girault J-O (2004) Possible role of region 152–156 in the structural duality of a peptide fragment sheep prion protein. Protein Sci 13:3151–3160PubMedCrossRefGoogle Scholar
  26. Morrissey MP, Shakhnovich EI (1999) Evidence for the role of PrPC helix 1 in the hydrophilic seeding of prion aggregates. Proc Natl Acad Sci USA 96:11293–11298PubMedCrossRefGoogle Scholar
  27. Muramoto T, Scott M, Cohen FE, Prusiner SB (1996) Recombinant scrapie-like prion protein of 106 amino acids. Proc Natl Acad Sci USA 93:15457–15462PubMedCrossRefGoogle Scholar
  28. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104:3712–3720CrossRefGoogle Scholar
  29. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966PubMedCrossRefGoogle Scholar
  30. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383PubMedCrossRefGoogle Scholar
  31. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP. Nature 382:180–182PubMedCrossRefGoogle Scholar
  32. Ryckaert JP, Ciccotti G, Berendsen HJC (1997) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  33. Santini S, Derreumaux P (2004) Helix H1 of the prion protein is rather stable against enviormental perturbations: molecular dynamics of mutation and deletion variants of PrP (90–231). Cell Mol Life Sci 61:951–960PubMedCrossRefGoogle Scholar
  34. Santini S, Calude J-B, Audic S, Derreumaux P (2003) Impact of tail and mutations G131V and M129V on prion protein flexibility. Proteins 51:258–265PubMedCrossRefGoogle Scholar
  35. Sharman GJ, Kenward N, Williams HE, Landon M, Mayer RJ, Searle MS (1998) Prion protein fragments spanning helix 1 and both strands of β-sheet (residues 125–170) show evidence for predominantly helical propensity by CD and NMR. Fold Des 3:313–320PubMedCrossRefGoogle Scholar
  36. Tompa P, Tusnady GE, Simon I (2002) The role of dimerization in prion replication. Biophys J 82:1711–1718PubMedCrossRefGoogle Scholar
  37. Watzlawik J, Sokra L, Frense D, Griesinger C, Zweckstetter M, Schulz-Schaeffer WJ, Kramer ML (2006) Prion protein helix 1 promotes aggregation but is not converted into β-sheet. J Biol Chem 281:30242–30250PubMedCrossRefGoogle Scholar
  38. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2004) Gromacs user manual version 3.2.
  39. Ziegler J, Sticht H, Marx UC, Muller W, Rosch P, Schwarzinger S (2003) CD and NMR studies of prion protein (PrP) Helix 1. J Biol Chem 278:50175–50181PubMedCrossRefGoogle Scholar
  40. Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to PrPSc-like form. J Biol Chem 277:43492–43947Google Scholar

Copyright information

© European Biophysical Societies' Association 2009

Authors and Affiliations

  1. 1.Department of PhysicsNational Central UniversityChungliTaiwan
  2. 2.Graduate Institute of Systems Biology and BioinformaticsNational Central UniversityChungliTaiwan
  3. 3.Department of OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations