Movements of native C505 during channel gating in CNGA1 channels

Original Paper


We investigated conformational changes occurring in the C-linker and cyclic nucleotide-binding (CNB) domain of CNGA1 channels by analyzing the inhibition induced by thiol-specific reagents in mutant channels Q409C and A414C in the open and closed state. Cd2+ (200 μM) inhibited irreversibly mutant channels Q409C and A414C in the closed but not in the open state. Cd2+ inhibition was abolished in the mutant A414Ccys-free, in the double mutant A414C + C505T and in the tandem construct A414C + C505T/CNGA1, but it was present in the construct A414C + C505cys-free. The cross-linker reagent M-2-M inhibited mutant channel Q409C in the open state. M-2-M inhibition in the open state was abolished in the double mutant Q409C + C505T and in the tandem construct Q409C + C505T/CNGA1. These results show that Cα of C505 in the closed state is located at a distance between 4 and 10.5 Å from the Cα of A414 of the same subunit, but in the open state C505 moves towards Q409 of the same subunit at a distance that ranges from 10.5 to 12.3 Å from Cα of this residue. These results are not consistent with a 3-D structure of the CNGA1 channel homologous to the structure of HCN2 channels either in the open or in the closed state.


Gating Ionic channels CNGA1 channels Cd2+ inhibition S6 domain 



Cyclic nucleotide-gated


Cyclic nucleotide-binding domain


Cysteine scanning mutagenesis




1,2-Ethanediyl bismethanethiosulfonate


1,4-Butanediyl bismethanethiosulfonate





We thank Vincent Torre for the continuous support and very useful comments and suggestions and Anita Zimmerman for comments on the manuscript. We would like to thank Dr. Jessica Franzot for technical assistance and discussion in performing Western blot analysis. This work was supported by a HFSP grant, a COFIN grant (2006) from the Italian Ministry, a grant from CIPE (GRAND FVG) and a FIRB grant (RBLA03AF28_007) from MIUR.


  1. Anselmi C, Carloni P, Torre V (2007) Origin of functional diversity among tetrameric voltage-gated channels. Proteins 66:136–146. doi: 10.1002/prot.21187 PubMedCrossRefGoogle Scholar
  2. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi: 10.1021/j100142a004 CrossRefGoogle Scholar
  3. Becchetti A, Roncaglia P (2000) Cyclic nucleotide-gated channels: intra- and extracellular accessibility to Cd2+ of substituted cysteine residues within the P-loop. Pflugers Arch 440:556–565PubMedCrossRefGoogle Scholar
  4. Becchetti A, Gamel K, Torre V (1999) Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines. J Gen Physiol 114:377–392. doi: 10.1085/jgp.114.3.377 PubMedCrossRefGoogle Scholar
  5. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  6. Benitah JP, Tomaselli GF, Marban E (1996) Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis. Proc Natl Acad Sci USA 93:7392–7396. doi: 10.1073/pnas.93.14.7392 PubMedCrossRefGoogle Scholar
  7. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. doi: 10.1063/1.448118 CrossRefGoogle Scholar
  8. Berg JM, Godwin HA (1997) Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371. doi: 10.1146/annurev.biophys.26.1.357 PubMedCrossRefGoogle Scholar
  9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi: 10.1093/nar/28.1.235 PubMedCrossRefGoogle Scholar
  10. Biel M, Zong X, Ludwig A, Sautter A, Hofmann F (1999) Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 135:151–171. doi: 10.1007/BFb0033672 PubMedCrossRefGoogle Scholar
  11. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947. doi: 10.1021/ja00523a008 CrossRefGoogle Scholar
  12. Bradley J, Frings S, Yau KW, Reed R (2001) Nomenclature for ion channel subunits. Science 294:2095–2096. doi: 10.1126/science.294.5549.2095 PubMedCrossRefGoogle Scholar
  13. Brown RL, Snow SD, Haley TL (1998) Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys J 75:825–833PubMedCrossRefGoogle Scholar
  14. Chen TY, Illing M, Molday LL, Hsu YT, Yau KW, Molday RS (1994) Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca2+-calmodulin modulation. Proc Natl Acad Sci USA 91:11757–11761. doi: 10.1073/pnas.91.24.11757 PubMedCrossRefGoogle Scholar
  15. Chikayama E, Nameki N, Kigawa T, Koshiba S, Inoue M, Tomizawa T, Kobayashi N, Yokoyama S (2004) Solution structure of the cNMP-binding domain from Arabidopsis thaliana cyclic nucleotide-regulated ion channel (to be published)Google Scholar
  16. Clayton GM, Silverman WR, Heginbotham L, Morais-Cabral JH (2004) Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell 119:615–627. doi: 10.1016/j.cell.2004.10.030 PubMedCrossRefGoogle Scholar
  17. Contreras JE, Srikumar D, Holmgren M (2008) Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 105(9):3310–3314PubMedCrossRefGoogle Scholar
  18. Craven KB, Zagotta WN (2004) Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J Gen Physiol 124:663–677. doi: 10.1085/jgp.200409178 PubMedCrossRefGoogle Scholar
  19. Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401. doi: 10.1146/annurev.physiol.68.040104.134728 PubMedCrossRefGoogle Scholar
  20. Craven KB, Olivier NB, Zagotta WN (2008) C-terminal movement during gating in cyclic nucleotide-modulated channels. J Biol Chem 283:14728–14738. doi: 10.1074/jbc.M710463200 PubMedCrossRefGoogle Scholar
  21. Diller TC, Madhusudan, Xuong NH, Taylor SS (2001) Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 9:73–82. doi: 10.1016/S0969-2126(00)00556-6
  22. Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313. doi: 10.1038/313310a0 PubMedCrossRefGoogle Scholar
  23. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3288. doi: 10.1016/0040-4020(80)80168-2 CrossRefGoogle Scholar
  24. Gordon SE, Varnum MD, Zagotta WN (1997) Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19:431–441. doi: 10.1016/S0896-6273(00)80951-4 PubMedCrossRefGoogle Scholar
  25. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi: 10.1063/1.448799 CrossRefGoogle Scholar
  26. Hofmann F, Biel M, Kaupp UB (2005) International Union of Pharmacology. LI. Nomenclature and structure–function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev 57:455–462. doi: 10.1124/pr.57.4.8 PubMedCrossRefGoogle Scholar
  27. Holmgren M, Shin KS, Yellen G (1998) The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Neuron 21:617–621. doi: 10.1016/S0896-6273(00)80571-1 PubMedCrossRefGoogle Scholar
  28. Islas LD, Zagotta WN (2006) Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J Gen Physiol 128:337–346. doi: 10.1085/jgp.200609556 PubMedCrossRefGoogle Scholar
  29. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  30. Kaupp UB, Niidome T, Tanabe T, Terada S, Bonigk W, Stuhmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766. doi: 10.1038/342762a0 PubMedCrossRefGoogle Scholar
  31. Körschen HG, Illing M, Seifert R, Sesti F, Williams A, Gotzes S, Colville C, Müller F, Dose A, Godde M (1995) A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 15:627–636. doi: 10.1016/0896-6273(95)90151-5 PubMedCrossRefGoogle Scholar
  32. Krizek BA, Zawadzke LE, Berg JM (1993) Independence of metal binding between tandem Cys2His2 zinc finger domains. Protein Sci 2:1313–1319PubMedCrossRefGoogle Scholar
  33. Krovetz HS, VanDongen HM, VanDongen AM (1997) Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore. Biophys J 72:117–126PubMedCrossRefGoogle Scholar
  34. Kubo Y, Yoshimichi M, Heinemann SH (1998) Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis. FEBS Lett 435:69–73. doi: 10.1016/S0014-5793(98)01038-2 PubMedCrossRefGoogle Scholar
  35. Kurz LL, Zuhlke RD, Zhang HJ, Joho RH (1995) Side-chain accessibilities in the pore of a K+ channel probed by sulfhydryl-specific reagents after cysteine-scanning mutagenesis. Biophys J 68:900–905PubMedCrossRefGoogle Scholar
  36. Liu Y, Holmgren M, Jurman ME, Yellen G (1997) Gated access to the pore of a voltage-dependent K+ channel. Neuron 19:175–184. doi: 10.1016/S0896-6273(00)80357-8 PubMedCrossRefGoogle Scholar
  37. Loo TW, Clarke DM (2001) Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J Biol Chem 276:36877–36880. doi: 10.1074/jbc.C100467200 PubMedCrossRefGoogle Scholar
  38. Loussouarn G, Makhina EN, Rose T, Nichols CG (2000) Structure and dynamics of the pore of inwardly rectifying KATP channels. J Biol Chem 275:1137–1144. doi: 10.1074/jbc.275.2.1137 PubMedCrossRefGoogle Scholar
  39. Matulef K, Flynn GE, Zagotta WN (1999) Molecular rearrangements in the ligand-binding domain of cyclic nucleotide-gated channels. Neuron 24:443–452. doi: 10.1016/S0896-6273(00)80857-0 PubMedCrossRefGoogle Scholar
  40. Mazzolini M, Punta M, Torre V (2002) Movement of the C-helix during the gating of cyclic nucleotide-gated channels. Biophys J 83:3283–3295PubMedCrossRefGoogle Scholar
  41. Mazzolini M, Nair AV, Torre V (2008) A comparison of electrophysiological properties of the CNGA1, CNGA1tandem and CNGA1cys-free channels. Eur Biophys J 37:947–959. doi: 10.1007/s00249-008-0312-1 PubMedCrossRefGoogle Scholar
  42. Menini A (1990) Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods. J Physiol 424:167–185PubMedGoogle Scholar
  43. Molday RS, Molday LL, Dose A, Clark-Lewis I, Illing M, Cook NJ, Eismann E, Kaupp UB (1991) The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus. J Biol Chem 266:21917–21922PubMedGoogle Scholar
  44. Nair AV, Mazzolini M, Codega P, Giorgetti A, Torre V (2006) Locking CNGA1 channels in the open and closed state. Biophys J 90:3599–3607. doi: 10.1529/biophysj.105.073346 PubMedCrossRefGoogle Scholar
  45. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444. doi: 10.1038/325442a0 PubMedCrossRefGoogle Scholar
  46. Nizzari M, Sesti F, Giraudo MT, Virginio C, Cattaneo A, Torre V (1993) Single-channel properties of cloned cGMP-activated channels from retinal rods. Proc Biol Sci 254:69–74. doi: 10.1098/rspb.1993.0128 PubMedCrossRefGoogle Scholar
  47. Passner JM, Schultz SC, Steitz TA (2000) Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. J Mol Biol 304:847–859. doi: 10.1006/jmbi.2000.4231 PubMedCrossRefGoogle Scholar
  48. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TEIII, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41. doi: 10.1016/0010-4655(95)00041-D CrossRefGoogle Scholar
  49. Picco C, Menini A (1993) The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander. J Physiol 460:741–758PubMedGoogle Scholar
  50. Ren X, Nicoll DA, Philipson KD (2006) Helix packing of the cardiac Na+–Ca2+ exchanger: proximity of transmembrane segments 1, 2, and 6. J Biol Chem 281:22808–22814. doi: 10.1074/jbc.M604753200 PubMedCrossRefGoogle Scholar
  51. Roncaglia P, Becchetti A (2001) Cyclic-nucleotide-gated channels: pore topology in desensitizing E19A mutants. Pflugers Arch 441:772–780. doi: 10.1007/s004240000480 PubMedCrossRefGoogle Scholar
  52. Rosenbaum T, Gordon SE (2002) Dissecting intersubunit contacts in cyclic nucleotide-gated ion channels. Neuron 33:703–713. doi: 10.1016/S0896-6273(02)00599-8 PubMedCrossRefGoogle Scholar
  53. Rothberg BS, Shin KS, Yellen G (2003) Movements near the gate of a hyperpolarization-activated cation channel. J Gen Physiol 122:501–510. doi: 10.1085/jgp.200308928 PubMedCrossRefGoogle Scholar
  54. Russell RB, Barton GJ (1992) Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14:309–323. doi: 10.1002/prot.340140216 PubMedCrossRefGoogle Scholar
  55. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. doi: 10.1016/0021-9991(77)90098-5 CrossRefGoogle Scholar
  56. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi: 10.1006/jmbi.1993.1626 PubMedCrossRefGoogle Scholar
  57. Schuettelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D60:1355–1363Google Scholar
  58. Sesti F, Eismann E, Kaupp UB, Nizzari M, Torre V (1995) The multi-ion nature of the cGMP-gated channel from vertebrate rods. J Physiol 487(Pt 1):17–36PubMedGoogle Scholar
  59. Shammat IM, Gordon SE (1999) Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels. Neuron 23:809–819. doi: 10.1016/S0896-6273(01)80038-6 PubMedCrossRefGoogle Scholar
  60. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129. doi: 10.1021/ja00172a038 CrossRefGoogle Scholar
  61. Sun ZP, Akabas MH, Goulding EH, Karlin A, Siegelbaum SA (1996) Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating. Neuron 16:141–149. doi: 10.1016/S0896-6273(00)80031-8 PubMedCrossRefGoogle Scholar
  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  63. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi: 10.1002/jcc.20035 PubMedCrossRefGoogle Scholar
  64. Wu J, Brown S, Xuong NH, Taylor SS (2004a) RIalpha subunit of PKA: a cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B. Structure 12:1057–1065. doi: 10.1016/j.str.2004.03.022 PubMedCrossRefGoogle Scholar
  65. Wu J, Jones JM, Nguyen-Huu X, Ten Eyck LF, Taylor SS (2004b) Crystal structures of RIα subunit of cyclic adenosine 5’-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3’,5’-cyclic monophosphothioate and (Sp)-adenosine 3’,5’-cyclic monophosphothioate, the phosphothioate analogues of cAMP. Biochemistry 43:6620–6629. doi: 10.1021/bi0302503 PubMedCrossRefGoogle Scholar
  66. Yellen G, Sodickson D, Chen TY, Jurman ME (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J 66:1068–1075PubMedCrossRefGoogle Scholar
  67. Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205. doi: 10.1038/nature01922 PubMedCrossRefGoogle Scholar
  68. Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  69. Zheng J, Trudeau MC, Zagotta WN (2002) Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36:891–896. doi: 10.1016/S0896-6273(02)01099-1 PubMedCrossRefGoogle Scholar
  70. Zhong H, Molday LL, Molday RS, Yau KW (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420:193–198. doi: 10.1038/nature01201 PubMedCrossRefGoogle Scholar
  71. Zimmerman AL, Baylor DA (1986) Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321:70–72. doi: 10.1038/321070a0 PubMedCrossRefGoogle Scholar
  72. Zimmerman AL, Yamanaka G, Eckstein F, Baylor DA, Stryer L (1985) Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proc Natl Acad Sci USA 82:8813–8817. doi: 10.1073/pnas.82.24.8813 PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2008

Authors and Affiliations

  • Anil V. Nair
    • 1
    • 3
  • Claudio Anselmi
    • 1
    • 2
  • Monica Mazzolini
    • 1
  1. 1.SISSA, International School for Advanced StudiesBasovizza (TS)Italy
  2. 2.SISSA and CNR-INFM-DEMOCRITOS Modeling Center for Research in Atomistic SimulationTriesteItaly
  3. 3.Department of Physiology, Nijmegen Centre for Molecular Life SciencesRadboud University, Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations