European Biophysics Journal

, 38:415

Concentration dependent effect of GsMTx4 on mechanosensitive channels of small conductance in E. coli spheroplasts

  • Annette C. Hurst
  • Philip A. Gottlieb
  • Boris Martinac
Original Paper


The spider peptide GsMTx4, at saturating concentration of 5 μM, is an effective and specific inhibitor for stretch-activated mechanosensitive (MS) channels found in a variety of eukaryotic cells. Although the structure of the peptide has been solved, the mode of action remains to be determined. Because of its amphipathic structure, the peptide is proposed to interact with lipids at the boundaries of the MS channel proteins. In addition, GsMTx4 has antimicrobial effects, inhibiting growth of several species of bacteria in the range of 5–64 μM. Previous studies on prokaryotic MS channels, which serve as model systems to explore the principle of MS channel gating, have shown that various amphipathic compounds acting at the protein–lipid interface affect MS channel gating. We have therefore analyzed the effect of different concentrations of extracellular GsMTx4 on MS channels of small conductance, MscS and MscK, in the cytoplasmic membrane of wild-type E. coli spheroplasts using the patch-clamp technique. Our study shows that the peptide GsMTx4 exhibits a biphasic response in which peptide concentration determines inhibition or potentiation of activity in prokaryotic MS channels. At low peptide concentrations of 2 and 4 μM the gating of the prokaryotic MS channels was hampered, manifested by a decrease in pressure sensitivity. In contrast, application of peptide at concentrations of 12 and 20 μM facilitated prokaryotic MS channel opening by increasing the pressure sensitivity.


MscS MscK Patch-clamp Grammostola peptide Amphipath Biphasic response 



Mechanosensitive channels




Stretch-activated channels


Mechanosensitive channel of large conductance


Small conductance


Small conductance, K+ dependent












Pressure cycle


  1. Akitake B, Anishkin A, Sukharev S (2005) The “dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125:143–154. doi:10.1085/jgp.200409198 PubMedCrossRefGoogle Scholar
  2. Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175–187. doi:10.1007/s002329900068 PubMedCrossRefGoogle Scholar
  3. Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35Google Scholar
  4. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YM, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270. doi:10.1016/j.toxicon.2006.09.030 PubMedCrossRefGoogle Scholar
  5. Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch Eur J Physiol 455:97–103CrossRefGoogle Scholar
  6. Cui C, Smith DO, Adler UJ (1995) Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membranes by whole cell patch clamp recording. J Membr Biol 144:31–42. doi:10.1007/BF00238414 PubMedGoogle Scholar
  7. Ermakov YA, Averbakh AZ, Arbuzova AB, Sukharev SI (1998) Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Membr Cell Biol 12:411–426PubMedGoogle Scholar
  8. Gottlieb PA, Suchyna TM, Sachs F (2007) Properties and mechanism of the mechanosensitive ion channel inhibitor GsMTx4, a therapeutic peptide derived from tarantula venom. Curr Top Membr 59:81–109. doi:10.1016/S1063-5823(06)59004-0 CrossRefGoogle Scholar
  9. Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765Google Scholar
  10. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  11. Hamill OP, McBride DW Jr (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48:231–252PubMedGoogle Scholar
  12. Heller DN, Cotter RJ, Fenselau C (1987) Profiling of bacteria by fast atom bombardment mass spectroscopy. Anal Chem 59:2806–2809. doi:10.1021/ac00150a018 PubMedCrossRefGoogle Scholar
  13. Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Chem 17:99–124Google Scholar
  14. Jung HJ, Kim P, Lee SK, Lee CW, Eu Y-J, Lee DG, Earm Y-E, Kim JI (2006) Lipid membrane interaction and antimicrobial activity of GsMTx-4, an inhibitor of mechanosensitive channel. Biochem Biophys Res Commun 340:633–638. doi:10.1016/j.bbrc.2005.12.046 PubMedCrossRefGoogle Scholar
  15. Kloda A, Martinac B (2002) Common evolutionary origins of mechanosensitive ion channels in archaea, bacteria and cell-walled Eukarya. Archaea 1:35–44PubMedCrossRefGoogle Scholar
  16. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi:10.1038/nature03896 PubMedCrossRefGoogle Scholar
  17. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi:10.1093/emboj/18.7.1730 PubMedCrossRefGoogle Scholar
  18. Li Y, Moe PC, Chandrasekaran S, Booth ER, Blount P (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 12:5323–5330. doi:10.1093/emboj/cdf537 CrossRefGoogle Scholar
  19. Lin JH, Rydqvist B (1999) The mechanotransduction of the crayfish stretch receptor neuron can be differentially activated or inactivated by local anaesthetics. Acta Physiol Scand 166:65–74. doi:10.1046/j.1365-201X.1999.00525.x PubMedCrossRefGoogle Scholar
  20. Martinac B (2004) Mechanosenitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460. doi:10.1242/jcs.01232 PubMedCrossRefGoogle Scholar
  21. Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301. doi:10.1073/pnas.84.8.2297 PubMedCrossRefGoogle Scholar
  22. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263. doi:10.1038/348261a0 PubMedCrossRefGoogle Scholar
  23. Nishizawa M, Nishizawa K (2007) Molecular dynamics simulations of a stretch-activated channel inhibitor GsMTx4 with lipid membranes: two binding modes and effects of lipid structure. Biophys J 92:4233–4243. doi:10.1529/biophysj.106.101071 PubMedCrossRefGoogle Scholar
  24. Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N, Gottlieb PA (2003) cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 42:263–274Google Scholar
  25. Oswald RE, Suchyna TM, McFeeters R, Gottlieb PA, Sachs F (2002) Solution structure of peptide toxins that block mechanosensitive ion channels. JBC 277:34443Google Scholar
  26. Patel AJ, Lazdunski M, Honoré E (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol 13:422–428. doi:10.1016/S0955-0674(00)00231-3 PubMedCrossRefGoogle Scholar
  27. Perozo E (2006) Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol 7:109–119. doi:10.1038/nrm1833 PubMedCrossRefGoogle Scholar
  28. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Mol Biol 9:696–703. doi:10.1038/nsb827 CrossRefGoogle Scholar
  29. Phillips LR, Milescu M, Li-Smerin Y, Mindell JA, Kim JI, Swartz KJ (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436:857–860. doi:10.1038/nature03873 PubMedCrossRefGoogle Scholar
  30. Posokhov YO, Gottlieb PA, Morales MJ, Sachs F, Ladokhin AS (2007) Is lipid bilayer binding a common property of inhibitor cysteine knot ion-channel blockers? Biophys J 93:L20–L22. doi:10.1529/biophysj.107.112375 PubMedCrossRefGoogle Scholar
  31. Qi Z, Chi S, Naruse K, Sokabe M (2005) Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol Membr Biol 22:519–527. doi:10.1080/09687860500370703 PubMedCrossRefGoogle Scholar
  32. Sachs F, Sokabe M (1990) Stretch-activated ion channels and membrane mechanics. Neurosci Res Suppl 12:S1–S4Google Scholar
  33. Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728Google Scholar
  34. Sotomayor M, Vasquez V, Perozo E, Schulten K (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92:886–902. doi:10.1529/biophysj.106.095232 PubMedCrossRefGoogle Scholar
  35. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598. doi:10.1085/jgp.115.5.583 PubMedCrossRefGoogle Scholar
  36. Suchyna TM, Tape SE, Koeppe RE, Andersen OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430:235–240. doi:10.1038/nature02743 PubMedCrossRefGoogle Scholar
  37. Vasquez V, Marien Cortes D, Furukawa H, Perozo E (2007) An optimized purification and reconstitution method for the MscS channel: strategies for spectroscopical analysis. Biochemistry 46:6766–6773. doi:10.1021/bi700322k PubMedCrossRefGoogle Scholar
  38. Wikström M, Xie J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander Å, Dowhan W (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J Biol Chem 279:10484–10493. doi:10.1074/jbc.M310183200 PubMedCrossRefGoogle Scholar
  39. Zhang Y, Hamill OP (2000) On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol 15:101–115Google Scholar
  40. Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J (2003) Evolutionary origin of inhibitor cystine knot peptides. FASEB J 17:1765–1767Google Scholar

Copyright information

© European Biophysical Societies' Association 2008

Authors and Affiliations

  • Annette C. Hurst
    • 1
  • Philip A. Gottlieb
    • 2
  • Boris Martinac
    • 1
    • 3
  1. 1.Molecular Biophysics Laboratory, School of Biomedical SciencesUniversity of QueenslandSt LuciaAustralia
  2. 2.Department of Physiology and BiophysicsSUNY at BuffaloBuffaloUSA
  3. 3.The Victor Chang Cardiac Research InstituteLowy Packer BuildingDarlinghurstAustralia

Personalised recommendations