Advertisement

Enzyme solid-state support assays: a surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme

  • Giuseppe Grasso
  • Ashley I. Bush
  • Roberta D’Agata
  • Enrico Rizzarelli
  • Giuseppe Spoto
Original Paper

Abstract

Solid-support based assays offer several advantages that are not normally available in solution. Enzymes that are anchored on gold surfaces can interact with several different molecules, opening the way to high throughput array format based assays. In this scenario, surface plasmon resonance (SPR) and mass spectrometry (MS) investigations have often been applied to analyze the interaction between immobilized enzyme and its substrate molecules in a tag-free environment. Here, we propose a SPR-MS combined experimental approach aimed at studying insulin degrading enzyme (IDE) immobilized onto gold surfaces and its ability to interact with insulin. The latter is delivered by a microfluidic system to the IDE functionalized surface and the activity of the immobilized enzyme is verified by atmospheric pressure/matrix assisted laser desorption ionization (AP/MALDI) MS analysis. The SPR experiments allow the calculation of the kinetic constants involved for the interaction between immobilized IDE and insulin molecules and evidence of IDE conformational change upon insulin binding is also obtained.

Keywords

Solid-state assay Surface plasmon resonance Mass spectrometry Insulin degrading enzyme Conformational change 

Notes

Acknowledgment

We thank MIUR (FIRB RBNE03PX83, RBIN04L28Y) and “EURAMY: Systemic Amyloidoses in Europe”, 037525 (LSHM-CT-2006-037525) for partial financial support.

References

  1. Aguilar M-I, Small DH (2005) Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox Res 7:17–27PubMedCrossRefGoogle Scholar
  2. Andrade SM, Carvalho TI, Viseu MI, Costa SM (2004) Conformational changes of beta-lactoglobulin in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles. A fluorescence and CD study. Eur J Biochem 271:734–744. doi: 10.1111/j.1432-1033.2004.03977.x PubMedCrossRefGoogle Scholar
  3. Blomqvist ME-L, Silburn PA, Buchanan DD, Andreasen N, Blennow K, Pedersen NL, Brookes AJ, Mellick GD, Prince JA (2004) Sequence variation in the proximity of IDE may impact age at onset of both Parkinson disease and Alzheimer disease. Neurogenetics 5:115–119. doi: 10.1007/s10048-004-0173-4 PubMedCrossRefGoogle Scholar
  4. D’Agata R, Grasso G, Spoto G (2008) Real-time binding kinetics monitored with surface plasmon resonance imaging in a diffusion-free environment. Open Spectrosc J 2:1–9. doi: 10.2174/1874383800802010001 CrossRefGoogle Scholar
  5. Darnell JE, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New YorkGoogle Scholar
  6. Di Venere A, Rossi A, De Matteis F, Rosato N, Finazzi Agrò A, Mei G (2000) Opposite effects of Ca2+ and GTP binding on tissue transglutaminase tertiary structure. J Biol Chem 275:3915–3921PubMedCrossRefGoogle Scholar
  7. Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer JD, Mehta GM, Stayton PS (2003) Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Annu Rev Phys Chem 54:531–571. doi: 10.1146/annurev.physchem.54.011002.103903 PubMedCrossRefGoogle Scholar
  8. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guénette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167. doi: 10.1073/pnas.0230450100 PubMedCrossRefGoogle Scholar
  9. Geitmann M, Danielson UH (2004) Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal Biochem 332:203–214. doi: 10.1016/j.ab.2004.06.008 PubMedCrossRefGoogle Scholar
  10. Grasso G, D’Agata R, Rizzarelli E, Spoto G, D’Andrea L, Pedone C, Picardi A, Romanelli A, Fragai M, Yeo KJ (2005) Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. J Mass Spectrom 40:1565–1571. doi: 10.1002/jms.929 PubMedCrossRefGoogle Scholar
  11. Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ (2006) In situ AP-MALDI characterization of anchored MMPs. J Mass Spectrom 41:1561–1569. doi: 10.1002/jms.1126 PubMedCrossRefGoogle Scholar
  12. Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ (2007a) A new methodology for monitoring the activity of cdMMP-12 anchored and freeze-dried on Au (111). J Am Soc Mass Spectrom 18:961–969. doi: 10.1016/j.jasms.2007.02.003 PubMedCrossRefGoogle Scholar
  13. Grasso G, Rizzarelli E, Spoto G (2007b) AP/MALDI-MS complete characterization of the proteolytic fragments produced by the interaction of insulin degrading enzyme with bovine insulin. J Mass Spectrom 42:1590–1598. doi: 10.1002/jms.1348 PubMedCrossRefGoogle Scholar
  14. Grasso G, Rizzarelli E, Spoto G (2008) How the binding and degrading capabilities of insulin degrading enzyme are affected by ubiquitin. Biochim Biophys Acta 1784:1122–1126PubMedGoogle Scholar
  15. Homola J (ed) (2006) Surface plasmon resonance based sensors. Springer, BerlinGoogle Scholar
  16. Honjo E, Watanabe K, Tsukamoto T (2002) Real-time kinetic analyses of the interaction of ricin toxin A-chain with ribosomes prove a conformational change involved in complex formation. J Biochem 131:267–275PubMedGoogle Scholar
  17. Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun C-Y, Meredith SC, Sisodia SS, Leissring M, Tang W-J (2007) Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J Biol Chem 282:25453–25463. doi: 10.1074/jbc.M701590200 PubMedCrossRefGoogle Scholar
  18. Ji ZL, Chen X, Zhen CJ, Yao LX, Han LY, Yeo WK, Chung PC, Puy HS, Tay YT, Muhammad A, Chen YZ (2003) KDBI: kinetic data of bio-molecular interactions database. Nucleic Acids Res 31:255–257. doi: 10.1093/nar/gkg067 PubMedCrossRefGoogle Scholar
  19. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648. doi: 10.1021/la971228b CrossRefGoogle Scholar
  20. Kang T, Hong S, Choi I, Sung JJ, Kim Y, Hahn J-S, Yi J (2006) Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy. J Am Chem Soc 128:12870–12878. doi: 10.1021/ja0632198 PubMedCrossRefGoogle Scholar
  21. Kim M, Jung SO, Park K, Jeong E-J, Joung H-A, Kim T-H, Seol D-W, Chung BH (2005) Detection of bax protein conformational change using a surface plasmon resonance imaging-based antibody chip. Biochem Biophys Res Commun 338:1834–1838. doi: 10.1016/j.bbrc.2005.10.155 PubMedCrossRefGoogle Scholar
  22. Kurochkin IV, Goto S (1994) Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37. doi: 10.1016/0014-5793(94)00387-4 PubMedCrossRefGoogle Scholar
  23. Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790. doi: 10.1021/ac980959t PubMedCrossRefGoogle Scholar
  24. Leissring MA, Selkoe DJ (2006) Structural biology: enzyme target to latch on to. Nature 443:761–762. doi: 10.1038/nature05210 PubMedCrossRefGoogle Scholar
  25. Leslie TE, Lilley TH (1985) Aqueous solutions containing amino acids and peptides. Part 20. Volumetric behavior of some terminally substituted amino acids and peptides at 298.15 K. Biopolymers 24:695–710. doi: 10.1002/bip.360240409 CrossRefGoogle Scholar
  26. Manno M, Craparo EF, Podesta A, Bulone D, Carrotta R, Martorana V, Tiana G, San Biagio PL (2007) Kinetics of different processes in human insulin amyloid formation. J Mol Biol 366:258–274. doi: 10.1016/j.jmb.2006.11.008 CrossRefGoogle Scholar
  27. Miners JS, Kehoe PG, Love S (2008) Immunocapture-based fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J Neurosci Methods 169:177–181. doi: 10.1016/j.jneumeth.2007.12.003 PubMedCrossRefGoogle Scholar
  28. Myszka DG, Morton TA (1998) CLAMP: a biosensor kinetic data analysis program. Trends Biochem Sci 23:149–150. doi: 10.1016/S0968-0004(98)01183-9 PubMedCrossRefGoogle Scholar
  29. Myszka DG, Wood SJ, Biere AL (1999) Analysis of fibril elongation using surface plasmon resonance biosensors. Methods Enzymol 309:386–402. doi: 10.1016/S0076-6879(99)09027-8 PubMedCrossRefGoogle Scholar
  30. Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657–10663. doi: 10.1021/bi00159a003 PubMedCrossRefGoogle Scholar
  31. Shen Y, Joachimiak A, Rosner MR, Tang W-J (2006) Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443:870–874. doi: 10.1038/nature05143 PubMedCrossRefGoogle Scholar
  32. Song ES, Juliano MA, Juliano L, Hersh LB (2003) Substrate activation of insulin degrading enzyme (insulysin), a potential target for drug development. J Biol Chem 278:49789–49794. doi: 10.1074/jbc.M308983200 PubMedCrossRefGoogle Scholar
  33. Sota H, Hasegawa Y, Iwakura M (1998) Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal Chem 70:2019–2024. doi: 10.1021/ac9713666 PubMedCrossRefGoogle Scholar
  34. Vepsäläinen S, Parkinson M, Helisalmi S, Mannermaa A, Soininen H, Tanzi RE, Bertram L, Hiltunen M (2007) Insulin-degrading enzyme is genetically associated with Alzheimer’s disease in the Finnish population. J Med Genet 44:606–608. doi: 10.1136/jmg.2006.048470 PubMedCrossRefGoogle Scholar
  35. Yamaguchi S, Mannen T, Zako T, Kamiya N, Nagamune T (2003) Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Biotechnol Prog 19:1348–1354. doi: 10.1021/bp034015n PubMedCrossRefGoogle Scholar
  36. Yowler BC, Schengrund C-L (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43:9725–9731. doi: 10.1021/bi0494673 PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2008

Authors and Affiliations

  • Giuseppe Grasso
    • 1
  • Ashley I. Bush
    • 2
    • 3
  • Roberta D’Agata
    • 1
  • Enrico Rizzarelli
    • 1
  • Giuseppe Spoto
    • 1
    • 4
  1. 1.Dipartimento Scienze ChimicheUniversità di CataniaCataniaItaly
  2. 2.Department of PsychiatryMassachusetts General HospitalCharlestoneUSA
  3. 3.Department of Pathology, Mental Health Research Institute of VictoriaThe University of MelbourneParkvilleAustralia
  4. 4.Istituto di Biostrutture e Bioimmagini, CNRCataniaItaly

Personalised recommendations