Surfactant-induced conformational transition of amyloid β-peptide

Original Paper


Accumulating evidence suggests that Aβ1–42–membrane interactions may play an important role in the pathogenesis of Alzheimer’s disease. However, the mechanism of this structural transition remains unknown. In this work, we have shown that submicellar concentrations of sodium dodecyl sulfate (SDS) can provide a minimal platform for Aβ1–42 self-assembly. To further investigate the relation between Aβ1–42 structure and function, we analyzed peptide conformation and aggregation at various SDS concentrations using circular dichroism (CD), Fourier transform infrared spectroscopy, and gel electrophoresis. These aggregates, as observed via atomic force microscopy, appeared as globular particles in submicellar SDS with diameters of 35–60 nm. Upon sonication, these particles increased in disc diameter to 100 nm. Pyrene I3/I1 ratios and 1-anilinonaphthalene-8-sulfonic acid binding studies indicated that the peptide interior is more hydrophobic than the SDS micelle interior. We have also used Forster resonance energy transfer between N-terminal labeled pyrene and tyrosine (10) of Aβ1–42 in various SDS concentrations for conformational analysis. The results demonstrate that SDS at submicellar concentrations accelerates the formation of spherical aggregates, which act as niduses to form large spherical aggregates upon sonication.


Alzheimer’s disease 1–42 peptide Submicellar SDS concentration Partially folded structures FRET 



Amyloid β peptide, a 42 residue peptide


Atomic force microscopy


1-Anilinonapthalene-8-sulfonic acid ammonium salt


Circular dichroism


Forster resonance energy transfer


Fourier transformed infrared spectroscopy


Sodium dodecyl sulfate


Trifluoro acetic acid


2,2,2 Trifluoroethanol



We thank Dr. T. Ramasami, Director, CLRI, for his kind support for this work. One of the author, N. Sureshbabu thanks the Council for Scientific and Industrial Research (CSIR) for providing funds in the form of SRF. We also thank Dr. Ganesh, Vanderbilt University, for his help with peptide synthesis.

Supplementary material

249_2008_379_MOESM1_ESM.doc (75 kb)
MOESM1 (DOC 75 kb)


  1. Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein (A beta P-(1–40)) in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577. doi:10.1073/pnas.90.22.10573 PubMedCrossRefGoogle Scholar
  2. Bokvist M, Lindstrom F, Watts A, Grobner G (2004) Two types of Alzheimer’s beta-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049. doi:10.1016/j.jmb.2003.11.046 PubMedCrossRefGoogle Scholar
  3. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793. doi:10.1038/385787a0 PubMedCrossRefGoogle Scholar
  4. Chaney MO, Webster SD, Kuo YM, Roher AE (1998) Molecular modeling of the Abeta1-42 peptide from Alzheimer’s disease. Protein Eng 11:761–767. doi:10.1093/protein/11.9.761 PubMedCrossRefGoogle Scholar
  5. Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311:173–182. doi:10.1006/jmbi.2001.4850 PubMedCrossRefGoogle Scholar
  6. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594. doi:10.1073/pnas.96.7.3590 PubMedCrossRefGoogle Scholar
  7. Choo LPI, Wetzel DL, Halliday W, Jackson M, LeVine SM, Mantsch HH (1996) In situ characterization of β-amyloid in Alzheimer’s diseased tissue by synchroton Fourier transform infrared microspectroscopy. Biophys J 71:1672–1679PubMedCrossRefGoogle Scholar
  8. Clark NS, Dodd I, Mossakowska DE, Smith RA, Gore MG (1996) Folding and conformational studies on SCR1-3 domains of human complement receptor 1. Protein Eng 9:877–884. doi:10.1093/protein/9.10.877 PubMedCrossRefGoogle Scholar
  9. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84. doi:10.1038/nn1372 PubMedCrossRefGoogle Scholar
  10. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide (1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077. doi:10.1021/bi972979f PubMedCrossRefGoogle Scholar
  11. Crowther DC, Serpell LC, Dafforn TR, Gooptu B, Lomas DA (2003) Nucleation of α 1-antichymotrypsin polymerization. Biochemistry 42:2355–2363. doi:10.1021/bi0259305 PubMedCrossRefGoogle Scholar
  12. Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276:17796–17799. doi:10.1074/jbc.M010436200 PubMedCrossRefGoogle Scholar
  13. Dong A, Prestrelski SJ, Allison SD, Carpenter JFJ (1995) Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. Pharm Sci 84:415–424CrossRefGoogle Scholar
  14. Ekiel I, Abrahamson M (1996) Folding-related dimerization of human cystatin C. J Biol Chem 271:1314–1321. doi:10.1074/jbc.271.3.1314 PubMedCrossRefGoogle Scholar
  15. Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166. doi:10.1038/35065514 PubMedCrossRefGoogle Scholar
  16. Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem 277:36948–36954. doi:10.1074/jbc.M204168200 PubMedCrossRefGoogle Scholar
  17. Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M (2004) A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 26:365–375. doi:10.1016/j.mcn.2004.03.001 PubMedCrossRefGoogle Scholar
  18. Garavito RM, Ferguson-Miller SJ (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406. doi:10.1074/jbc.R100031200 PubMedCrossRefGoogle Scholar
  19. Gehman JD, O’Brien CC, Shabanpoor F, Wade JD, Separovic F (2008) Metal effects on the membrane interactions of amyloid-beta peptides. Eur Biophys J 37:333–344. doi:10.1007/s00249-007-0251-2 PubMedCrossRefGoogle Scholar
  20. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 18:10417–10422. doi:10.1073/pnas.1834302100 CrossRefGoogle Scholar
  21. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228. doi:10.1073/pnas.95.8.4224 PubMedCrossRefGoogle Scholar
  22. Halverson K, Fraser PE, Kirschner DA Jr, Lansbury PT (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic beta-protein fragments. Biochemistry 29:2639–2644. doi:10.1021/bi00463a003 PubMedCrossRefGoogle Scholar
  23. Hatters DM, Lawrence LJ, Howlett GJ (2001) Submicellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 494:220–224. doi:10.1016/S0014-5793(01)02355-9 Google Scholar
  24. Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound -synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101:8331–8336. doi:10.1073/pnas.0400553101 Google Scholar
  25. Jen CJ, Mclntire LV (1984) Characteristics of shear-induced aggregation in whole blood. J Lab Clin Med 103:115–124PubMedGoogle Scholar
  26. Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23:1311–1315. doi:10.1016/S0196-9781(02)00067-0 PubMedCrossRefGoogle Scholar
  27. Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276:24985–24990. doi:10.1074/jbc.M100252200 PubMedCrossRefGoogle Scholar
  28. Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu AJ (1999) Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. Mol Biol 287:781–796. doi:10.1006/jmbi.1999.2646 CrossRefGoogle Scholar
  29. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106. doi:10.1016/S0959-440X(98)80016-X PubMedCrossRefGoogle Scholar
  30. Kim J, Lee M (2004) Observation of multi-step conformation switching in β-amyloid peptide aggregation by fluorescence resonance energy transfer. Biochem Biophys Res Commun 316:393–397PubMedCrossRefGoogle Scholar
  31. Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69:567–577. doi:10.1002/jnr.10328 PubMedCrossRefGoogle Scholar
  32. Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312:1103–1119. doi:10.1006/jmbi.2001.4970 PubMedCrossRefGoogle Scholar
  33. Klein WL (2002) ADDLs & protofibrils—the missing links? Neurobiol Aging 23:231–235. doi:10.1016/S0197-4580(01)00312-8 PubMedCrossRefGoogle Scholar
  34. Lai Z, Colon W, Kelly JW (1996) The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35:6470–6482. doi:10.1021/bi952501g PubMedCrossRefGoogle Scholar
  35. Lambert MP, Stevens G, Sabo S, Barber K, Wang G, Wade W, Krafft G, Snyder S, Holzman TF, Klein WL (1994) Beta/A4-evoked degeneration of differentiated SH-SY5Y human neuroblastoma cells. J Neurosci Res 39:377–385. doi:10.1002/jnr.490390404 PubMedCrossRefGoogle Scholar
  36. Le Berre F, Chauveteau G, Pefferkorn EJ (1998) Shear induced aggregation/fragmentation of hydrated colloids. Colloid Interface Sci 199:13–21. doi:10.1006/jcis.1997.5308 CrossRefGoogle Scholar
  37. Lopez De La Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger H, Serrano L (2002) De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci USA 99:16052–16057. doi:10.1073/pnas.252340199 PubMedCrossRefGoogle Scholar
  38. Lougheed WD, Woutfe-Flanagan H, Clement JR, Albisser AM (1980) Insulin aggregation in artificial delivery systems. Diabetologia 19:1–9. doi:10.1007/BF00258302 PubMedCrossRefGoogle Scholar
  39. Ma K, Talafous J, Orlando R, Zagorski MG (1997) Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid β-peptide. Int J Exp Clin Invest 4:240–252Google Scholar
  40. Mark A Thompson, Planaria Software LLC, Seattle, WA
  41. Matsunaga Y, Ierovnik E, Yamada T, Turk V (2002) Conformational changes preceding amyloid-fibril formation of amyloid-beta and stefin B; parallels in pH dependence. Curr Med Chem 9:1717–1724PubMedGoogle Scholar
  42. Morillas M, Swietnicki W, Gambetti P, Surewicz WKJ (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 274:36859–36865. doi:10.1074/jbc.274.52.36859 PubMedCrossRefGoogle Scholar
  43. Motta A, Andreotti G, Amodeo P, Strazzullo G, Castiglione Morelli MA (1998) Solution structure of human calcitonin in membrane-mimetic environment: the role of the amphipathic helix. Proteins 32:314–323. doi:10.1002/(SICI)1097-0134(19980815)32:3<314::AID-PROT7>3.0.CO;2-HPubMedCrossRefGoogle Scholar
  44. Muga A, Arrondo JLR, Bellon T, Sancho J, Bernabeu C (1993) Arch Biochem Biophys 300:451–457. doi:10.1006/abbi.1993.1061 Google Scholar
  45. Narayanaswami V, Kim J, McNamee MG (1993) Protein–lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 1. Spatial disposition of cysteine residues in the gamma subunit analyzed by fluorescence-quenching and energy-transfer measurements. Biochemistry 32:12413–12419. doi:10.1021/bi00097a020 PubMedCrossRefGoogle Scholar
  46. Narayanaswami V, Szeto S, Ryan RO (2001) Lipid-association induced N- and C-terminal domain reorganization in human apolipoprotein E3. J Biol Chem 276:37853–37860PubMedGoogle Scholar
  47. O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279:17490–17499. doi:10.1074/jbc.M311300200 PubMedCrossRefGoogle Scholar
  48. Pertinhez TA, Bouchard M, Smith RA, Dobson CM, Smith LJ (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Lett 529:193–197. doi:10.1016/S0014-5793(02)03333-1 PubMedCrossRefGoogle Scholar
  49. Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–251. doi:10.1126/science.278.5336.245 PubMedCrossRefGoogle Scholar
  50. Ramirez-Alvarado M, Merkel JS, Regan L (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA 97:8979–8984. doi:10.1073/pnas.150091797 PubMedCrossRefGoogle Scholar
  51. Rangachari V, Reed DK, Moore DB, Rosenberry TL (2006) Secondary structure and interfacial aggregation of amyloid-β(1–40). Biochemistry 45:8639–8648. doi:10.1021/bi060323t PubMedCrossRefGoogle Scholar
  52. Rangachari V, Moore DB, Reed DK, Sonoda LK, Bridges AW, Conboy E, Hartigan D, Rosenberry TL (2007) Amyloid-beta(1–42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry 46:12451–12462. doi:10.1021/bi701213s PubMedCrossRefGoogle Scholar
  53. Rochet JC Jr, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68. doi:10.1016/S0959-440X(99)00049-4 PubMedCrossRefGoogle Scholar
  54. Satheeshkumar KS, Jayakumar R (2002) Sonication induced sheet formation at the air–water interface. Chem Commun (Camb) 7:2244–2245. doi:10.1039/b206886a CrossRefGoogle Scholar
  55. Schwyzer R (1986) Molecular mechanism of opioid receptor selection. Biochemistry 25:6335–6342. doi:10.1021/bi00368a075 PubMedCrossRefGoogle Scholar
  56. Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271:18295–18298PubMedGoogle Scholar
  57. Shoa H, Jao S, Ma K, Zagorski MG (1999) Solution structure of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of alzheimer’s disease. J Mol Biol 285:755–773. doi:10.1006/jmbi.1998.2348 Google Scholar
  58. Solomon B (2002) Mini Rev. Towards Alzheimer’s disease vaccination. Med Chem 2:85–92Google Scholar
  59. Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498:204–207. doi:10.1016/S0014-5793(01)02486-3 PubMedCrossRefGoogle Scholar
  60. Sreerama N, Woody RW (2000) Anal. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Biochemistry 287:252–260Google Scholar
  61. Stathopulos PB, Scholz GA, Hwang Y-M, Rumfeldt JAO, Leprock JR, Meiering EM (2004) Sonication of protein causes formation of aggregates that resemble amyloid. Protein Sci 13:1–11. doi:10.1110/ps.03309504 Google Scholar
  62. Stryer AL (1978) Fluorescence energy transfer as a spectroscopic ruler. Rev Biochem 47:819–846. doi:10.1146/ CrossRefGoogle Scholar
  63. Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32:389–394. doi:10.1021/bi00053a001 PubMedCrossRefGoogle Scholar
  64. Terzi E, Holzemann G, Seelig J (1995) Self-association of beta-amyloid peptide (1–40) in solution and binding to lipid membranes. J Mol Biol 252:633–642. doi:10.1006/jmbi.1995.0525 PubMedCrossRefGoogle Scholar
  65. Tew DJ, Bottomley SP, Smith DP, Ciccotosto GD, Babon J, Hinds MG, Masters CL, Cappai R, Barnham KJ (2008) Stabilization of neurotoxic soluble beta-sheet-rich conformations of the Alzheimer’s disease amyloid-beta peptide. Biophys J 94:2752–2766. doi:10.1529/biophysj.107.119909 PubMedCrossRefGoogle Scholar
  66. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153PubMedGoogle Scholar
  67. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744. doi:10.1074/jbc.M010907200 PubMedCrossRefGoogle Scholar
  68. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557. doi:10.1042/BST0300552 PubMedCrossRefGoogle Scholar
  69. Waterhous DV Jr, Johnson WC (1994) Importance of environment in determining secondary structure in proteins. Biochemistry 33:2121–2128. doi:10.1021/bi00174a019 PubMedCrossRefGoogle Scholar
  70. Wu P, Li YK, Talalay P, Brand L (1994) Characterization of the three-tyrosine residues of delta 5–3-ketosteroid isomerase by time-resolved fluorescence and circular dichroism. Biochemistry 33:7415–7422. doi:10.1021/bi00189a048 PubMedCrossRefGoogle Scholar
  71. Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004) Low concentrations of sodium dodecyl sulphate induce the extension of β-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43:11075–11082. doi:10.1021/bi049262u PubMedCrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2008

Authors and Affiliations

  1. 1.Bio-Organic and Neurochemistry LaboratoryCentral Leather Research InstituteChennaiIndia
  2. 2.National Institute of Ocean TechnologyChennaiIndia

Personalised recommendations