European Biophysics Journal

, 38:121 | Cite as

Transport at the nanoscale: temperature dependence of ion conductance

  • Catalin Chimerel
  • Liviu Movileanu
  • Soroosh Pezeshki
  • Mathias Winterhalter
  • Ulrich KleinekathöferEmail author
Biophysics Letter


Temperature dependent ion conductance in nanopores is measured in a wide range of electrolyte concentrations and compared with molecular modeling. Single outer membrane protein F (OmpF) channels from E. coli are reconstituted into planar lipid bilayers. In qualitative agreement with the experimental data, applied-field molecular dynamics unraveled atomistic details of the ion transport. Comparing the temperature dependence of the channel conductance with that of the bulk conductivity in the range from 0 to 90°C revealed that at low salt concentrations the transport is mainly driven along the pore surface. Increasing the salt concentration saturates the surface charge transport and induces ion transport in the center of the nanopore. The confinement of the nanopore then favors the formation of ion pairs. Stepping up the temperature reduces the life time of the ion pairs and increases the channel conductance more than expected from the bulk behavior.


Molecular Dynamic Simulation Channel Conductance Bulk Conductivity Atomic Detail Constriction Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M.W. acknowledge financial support through MRTN-CT-2005-019335 (Translocation) as well as L.M. from Syracuse University start-up funds and the US National Science Foundation Grant DMR-706517. Additionally, we thank Aiping Zhu and Luminita Damian for their help during the preliminary stage of this work.


  1. Aksimentiev A, Schulten K (2005) Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3751PubMedCrossRefGoogle Scholar
  2. Alcaraz A, Nestorovich EM, Aguilella-Arzo M, Aguilella VM, Bezrukov SM (2004) Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. Biophys J 87:943–947PubMedCrossRefGoogle Scholar
  3. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, Konig N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP et al (1995) The structure of OmpF porin in a tetragonal crystal form. Structure 3:1041–1050PubMedCrossRefGoogle Scholar
  4. Danelon C, Suenaga A, Winterhalter M, Yamato I (2003) Molecular origin of the cation selectivity in ompf porin: single channel conductances vs. free energy calculation. Biophys Chem 104:591–603PubMedCrossRefGoogle Scholar
  5. Danelon C, Nestorovich EM, Winterhalter M, Ceccarelli M, Bezrukov SM (2006) Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys J 90:1617–1617PubMedCrossRefGoogle Scholar
  6. Delcour AH (2003) Solute uptake through general porins. Front Biosci 8:d1055–d1071PubMedCrossRefGoogle Scholar
  7. Humphrey WF, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  8. Im W, Roux B (2002a) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322:851–859PubMedCrossRefGoogle Scholar
  9. Im W, Roux B (2002b) Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J Mol Biol 319:1177–1197PubMedCrossRefGoogle Scholar
  10. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  11. Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 128:15332–15340PubMedCrossRefGoogle Scholar
  12. Kang XF, Gu L-Q, Cheley S, Bayley H (2005) Single protein pores containing molecular adapters at high temperatures. Angew Chem Int Ed Engl 44:1495–1499PubMedCrossRefGoogle Scholar
  13. Lindsey H, Petersen NO, Chan SI (1979) Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta 555:147–167PubMedCrossRefGoogle Scholar
  14. MacKerell A, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field M, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F, Mattos C, Michnick S, Ngo T, Nguyen D, Prodhom B, Reiher W, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  15. Miedema H, Vrouenraets M, Wierenga J, Meijberg W, Robillard G, Eisenberg B (2007) A biological porin engineered into a molecular, nanofluidic diode. Nano Lett 7:2886–2891PubMedCrossRefGoogle Scholar
  16. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566PubMedCrossRefGoogle Scholar
  17. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656PubMedCrossRefGoogle Scholar
  18. Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, Schirmer T (2001) Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. Biochemistry 40:6319–6325PubMedCrossRefGoogle Scholar
  19. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1782PubMedCrossRefGoogle Scholar
  20. Robertson KM, Tieleman DP (2002) Orientation and interactions of dipolar molecules during transport through OmpF porin. FEBS Lett 528:53–57PubMedCrossRefGoogle Scholar
  21. Roux B, Allen T, Berneche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37:15–103PubMedCrossRefGoogle Scholar
  22. Sansom MS, Kerr ID, Breed J, Sankararamakrishnan R (1996) Water in channel-like cavities: structure and dynamics. Biophys J 70:693–702PubMedCrossRefGoogle Scholar
  23. Schirmer T, Phale PS (1999) Brownian dynamics simulation of ion flow through porin channels. J Mol Biol 294:1159–1167PubMedCrossRefGoogle Scholar
  24. Schuss Z, Nadler B, Eisenberg RS (2001) Derivation of poisson and nernst-planck equations in a bath and channel from a molecular model. Phys Rev E 64:036116CrossRefGoogle Scholar
  25. Sotomayor M, Vasquez V, Perozo E, Schulten K (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92:886–902PubMedCrossRefGoogle Scholar
  26. Suenaga A, Komeiji Y, Uebayasi M, Meguro T, Saito M, Yamato I (1998) Computational observation of an ion permeation through a channel protein. Biosci Rep 18:39–48PubMedCrossRefGoogle Scholar
  27. Tieleman DP, Berendsen HJ (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2791PubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2008

Authors and Affiliations

  • Catalin Chimerel
    • 1
  • Liviu Movileanu
    • 2
  • Soroosh Pezeshki
    • 1
  • Mathias Winterhalter
    • 1
  • Ulrich Kleinekathöfer
    • 1
    Email author
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany
  2. 2.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations