The role of protein–solvent hydrogen bond dynamics in the structural relaxation of a protein in glycerol versus water

Original Paper


We used MD simulations to investigate the dependence of the dynamics of a soluble protein, RNase A, on temperature and solvent environment. Consistent with neutron scattering data, the simulations predict that the protein undergoes a dynamical transition in both glycerol and aqueous solutions that is absent in the dry protein. The temperature of the transition is higher, while the rate of increase with temperature of the amplitudes of motion on the 100 ps timescale is lower, in glycerol versus water. Analysis of the dynamics of hydrogen bonds revealed that the protein dynamical transition is connected to the relaxation of the protein–solvent hydrogen bond network, which, in turn, is associated with solvent translational diffusion. Thus, it appears that the role of solvent dynamics in affecting the protein dynamical transition is qualitatively similar in water and glycerol.


Molecular dynamics Protein dynamics Dynamical transition Protein hydration Hydrogen bonds 



This work was supported by grants CHE–0417158 and CHE-0750175 from the National Science Foundation.


  1. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon, OxfordGoogle Scholar
  2. Andersen HC (1983) Rattle: a velocity version of the shake algorithm for molecular dynamics calculations. J Comp Phys 52:24–34CrossRefADSMATHGoogle Scholar
  3. Beé M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry, biology, and materials science. Adam Hilger, BristolGoogle Scholar
  4. Caliskan G, Kisliuk A, Sokolov AP (2002) Dynamic transition in lysozyme: role of a solvent. J Non-Cryst Solids 307:868–873CrossRefADSGoogle Scholar
  5. Caliskan G, Mechtani D, Roh JH, Kisliuk A, Sokolov AP, Azzam S, Cicerone MT, Lin-Gibson S, Peral I (2004) Protein and solvent dynamics: how strongly are they coupled? J Chem Phys 121:1978–1783CrossRefADSGoogle Scholar
  6. Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E (2006) Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA 103:9012–9016CrossRefADSGoogle Scholar
  7. Cornicchi E, Marconi M, Onori G, Paciaroni A (2006) Controlling the protein dynamical transition with sugar-based bioprotectant matrices: a neutron scattering study. Biophys J 91:289–297CrossRefGoogle Scholar
  8. Curtis JE, Dirama TE, Carri GA, Tobias DJ (2006) Inertial suppression of protein dynamics in a binary glycerol-trehalose glass. J Phys Chem B 110:22953–22956CrossRefGoogle Scholar
  9. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Ann Rev Biophys Biomol Struct 32:69–92CrossRefGoogle Scholar
  10. Dioumaev AK, Lanyi JK (2007) Bacteriorhodopsin photocycle at cryogenic temperatures reveals distributed barriers of conformational substates. Proc Natl Acad Sci USA 104:9621–9626CrossRefADSGoogle Scholar
  11. Dirama TE, Carri GA, Sokolov AP (2005) Coupling between lysozyme and glycerol dynamics: microscopic insights from molecular dynamics simulations. J Chem Phys 122(24):244910 CrossRefADSGoogle Scholar
  12. Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756CrossRefADSGoogle Scholar
  13. Doster W, Cusack S, Petry W (1990) Dynamical instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys Rev Lett 65:1080–1083CrossRefADSGoogle Scholar
  14. Doster W, Settles M (1999) The dynamical transition in proteins: the role of hydrogen bonds. In: Bellissent-Funel M-C (ed) Hydration processes in biology: experimental and theoretical approaches, vol 305. IOS, Amsterdam, pp 177–191Google Scholar
  15. Doster W, Settles M (2005) Protein–water displacement distributions. Biochim Biophys Acta 1749:173–186Google Scholar
  16. Essmann U, Perera L, Berkowitz ML, Darden T, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefADSGoogle Scholar
  17. Fenimore PW, Frauenfelder H, McMahon B, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and function. Proc Natl Acad Sci USA 99:16047–16051CrossRefADSGoogle Scholar
  18. Fenimore PW, Frauenfelder H, McMahon B, Young RD (2004a) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101:14408–14413CrossRefADSGoogle Scholar
  19. Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004b) Proteins are paradigms of stochastic complexity. Physica A 351:1–13CrossRefADSGoogle Scholar
  20. Finkelstein IJ, Massari AM, Fayer MD (2007) Viscosity-dependent protein dynamics. Biophys J 92:3652–3662CrossRefGoogle Scholar
  21. Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563CrossRefADSGoogle Scholar
  22. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603CrossRefADSGoogle Scholar
  23. Frauenfelder H, Fenimore PW, McMahon BH (2002) Hydration, slaving and protein function. Biophys Chem 98:35–48CrossRefGoogle Scholar
  24. Heberle J, Fitter J, Sass HJ, Büldt G (2000) Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys Chem 85:229–248CrossRefGoogle Scholar
  25. Knapp EE, Fischer SF, Parak F (1982) Protein dynamics from Mössbauer spectra: the temperature dependence. J Phys Chem 86:5042–5047CrossRefGoogle Scholar
  26. Kumar P, Yan Z, Xu L, Mazza MG, Buldryev SV, Chen S-H, Sastry S, Stanley HE (2006) Glass transition in biomolecules and the liquid–liquid critical point of water. Phys Rev Lett: 97(17):177802CrossRefADSGoogle Scholar
  27. Kurkal V, Daniel RM, Finney JL, Tehei M, Dunn RV, Smith JC (2005) Low frequency enzyme dynamics as a function of temperature and hydration: a neutron scattering study. Chem Phys 317:267–273CrossRefADSGoogle Scholar
  28. Lechner RE, Fitter J, Dencher NA, Hauss T (2006) Low-energy dynamics and biological function. Physica B 385–386:835–837CrossRefGoogle Scholar
  29. Lee AL, Wand AJ (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411:501–504CrossRefADSGoogle Scholar
  30. Luzar A, Chandler D (1996a) Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett 76:928–931CrossRefADSGoogle Scholar
  31. Luzar A, Chandler D (1996b) Hydrogen bond kinetics in liquid water. Nature 379:55–57CrossRefADSGoogle Scholar
  32. MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  33. Martyna GJ, Tuckerman ME, Klein ML (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643CrossRefADSGoogle Scholar
  34. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics simulations. J Chem Phys 101:4177–4189CrossRefADSGoogle Scholar
  35. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87:1117–1157CrossRefADSGoogle Scholar
  36. Paciaroni A, Cinelli S, Onori G (2002) Effect of the environment on the protein dynamical transition: a neutron scattering study. Biophys J 83:1157–1164Google Scholar
  37. Parak F (2003) Physical aspects of protein dynamics. Rep Prog Phys 66:103–129CrossRefADSGoogle Scholar
  38. Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357:423–424CrossRefADSGoogle Scholar
  39. Russo D, Hura GL, Copley JRD (2007) Effects of hydration water on protein methyl group dynamics in solution. Phys Rev E 75:040902CrossRefADSGoogle Scholar
  40. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341CrossRefADSGoogle Scholar
  41. Smith J, Kuczera K, Karplus M (1990) Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc Natl Acad Sci USA 90:9135–9139Google Scholar
  42. Swenson J, Jansson H, Bergman R (2006) Relaxation processes in supercooled confined water and implications for protein dynamics. Phys Rev Lett 96:247802CrossRefADSGoogle Scholar
  43. Tarek M, Tobias DJ (1999) Environmental dependence of the dynamics of protein hydration water. J Am Chem Soc 121:9740–9741CrossRefGoogle Scholar
  44. Tarek M, Tobias DJ (2000) The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and incoherent neutron scattering experiments. Biophys J 79:3244–3257CrossRefGoogle Scholar
  45. Tarek M, Martyna GJ, Tobias DJ (2000) Amplitudes and frequencies of protein dynamics: an analysis of discrepancies between neutron scattering and molecular dynamics simulations. J Am Chem Soc 102:10450–10451CrossRefGoogle Scholar
  46. Tarek M, Tobias DJ (2002) Role of protein–water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101CrossRefADSGoogle Scholar
  47. Tournier AL, Xu J, Smith JC (2003) Translational water dynamics drives the protein glass transition. Biophys J 85:1871–1875Google Scholar
  48. Tsai AM, Neumann DA, Bell LN (2000) Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys J 79:2728–2732Google Scholar
  49. Tuckerman ME, Yarne DA, Samuelson SO, Hughes AL, Martyna GJ (2000) Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms. Comp Phys Comm 128:333CrossRefADSMATHGoogle Scholar
  50. Wlodawer A, Svensson LA, Sjolin L, Gilliland G (1988) Structure of phosphate free ribonuclease A refined at 1.26 Å resolution. Biochemistry 27:2705–2717CrossRefGoogle Scholar
  51. Wood K, Frölich A, Paciaroni A, Moulin M, Härtlein M, Zaccaï G, Tobias DJ, Weik M (2008) Coincidence of dynamical transitions in a soluble protein and its hydration-water: direct measurements by neutron scattering and MD simulations. J Am Chem Soc 130:4586–4587CrossRefGoogle Scholar
  52. Wuttke J, Petry W, Coddens G, Fujara F (1995) Fast dynamics of glass-forming glycerol. Phys Rev E 52:4026–4034CrossRefADSGoogle Scholar
  53. Zanotti J-M, Bellissent-Funel MC, Chen SH (2005) Experimental evidence of a liquid–liquid transition in interfacial water. Europhys Lett 71:91–97CrossRefADSGoogle Scholar

Copyright information

© EBSA 2008

Authors and Affiliations

  1. 1.Equipe de dynamique des assemblages membranaires, Unité mixte de recherche CNRS/UHP 7565Université Henri PoincaréVandoeuvre-lès-Nancy cedexFrance
  2. 2.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations