European Biophysics Journal

, Volume 38, Issue 3, pp 293–303 | Cite as

The mechano-gated K2P channel TREK-1

  • Alexandra Dedman
  • Reza Sharif-Naeini
  • Joost H. A. Folgering
  • Fabrice Duprat
  • Amanda Patel
  • Eric HonoréEmail author


The versatility of neuronal electrical activity is largely conditioned by the expression of different structural and functional classes of K+ channels. More than 80 genes encoding the main K+ channel alpha subunits have been identified in the human genome. Alternative splicing, heteromultimeric assembly, post-translational modification and interaction with auxiliary regulatory subunits further increase the molecular and functional diversity of K+ channels. Mammalian two-pore domain K+ channels (K2P) make up one class of K+ channels along with the inward rectifiers and the voltage- and/or calcium-dependent K+ channels. Each K2P channel subunit is made up of four transmembrane segments and two pore-forming (P) domains, which are arranged in tandem and function as either homo- or heterodimeric channels. This novel structural arrangement is associated with unusual gating properties including “background” or “leak” K+ channel activity, in which the channels show constitutive activity at rest. In this review article, we will focus on the lipid-sensitive mechano-gated K2P channel TREK-1 and will emphasize on the polymodal function of this “unconventional” K+ channel.


Ion channels Stretch Mechanotransduction Potassium Pharmacology Physiology 



We are grateful to the ANR 2005 Cardiovasculaire-obésité-diabète, to the Association for Information and Research on Genetic Kidney Disease France, to the Fondation del Duca, to the Fondation de France, to the Fondation de la Recherche Médicale, to EEC Marie-Curie fellowships, to the Fondation de Recherche sur l’Hypertension Artérielle, to AFM, to HFSP to INSERM and to CNRS for support.


  1. Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376PubMedCrossRefGoogle Scholar
  2. Bayliss DA, Talley EM, Sirois JE, Lei Q (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K(+) channel expressed in brainstem respiratory neurons. Respir Physiol 129:159–174PubMedCrossRefGoogle Scholar
  3. Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C (2002a) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22:821–834PubMedCrossRefGoogle Scholar
  4. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2002b) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109:231–241PubMedCrossRefGoogle Scholar
  5. Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101(2):119-121CrossRefGoogle Scholar
  6. Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491PubMedGoogle Scholar
  7. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22:5403–5411PubMedCrossRefGoogle Scholar
  8. Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honoré E (2005a) Lysophosphatidic acid-operated K+ channels. J Biol Chem 280:4415–4421PubMedCrossRefGoogle Scholar
  9. Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honoré E (2005b) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53PubMedCrossRefGoogle Scholar
  10. Chemin J, Patel A, Delmas P, Sachs F, Lazdunski M, Honoré E (2007) Regulation of the mechano-gated K2P channel TREK-1 by membrane phospholipids. Curr Top Membr (in press)Google Scholar
  11. Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J 16:2565–2575PubMedCrossRefGoogle Scholar
  12. Decressac S, Franco M, Bendahhou S, Warth R, Knauer S, Barhanin J, Lazdunski M, Lesage F (2004) ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Rep 5:1171–1175PubMedCrossRefGoogle Scholar
  13. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77PubMedCrossRefGoogle Scholar
  14. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471PubMedCrossRefGoogle Scholar
  15. Duprat F, Lesage F, Patel AJ, Fink M, Romey G, Lazdunski M (2000) The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 57:906–912PubMedGoogle Scholar
  16. Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F (2007) Does sumoylation control K2P1/TWIK1 background K+ channels? Cell 130:563–569PubMedCrossRefGoogle Scholar
  17. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862PubMedGoogle Scholar
  18. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel activated by arachidonic acid and polyunsaturated fatty acid. EMBO J 17:3297–3308PubMedCrossRefGoogle Scholar
  19. Franks NP, Honoré E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608PubMedCrossRefGoogle Scholar
  20. Franks NP, Lieb WR (1999) Background K+ channels: an important target for volatile anesthetics? Nat Neurosci 2:395–396PubMedCrossRefGoogle Scholar
  21. Garry A, Fromy B, Blondeau N, Henrion D, Brau F, Gounon P, Guy N, Heurteaux C, Lazdunski M, Saumet JL (2007) Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. EMBO Rep 8:354–359PubMedCrossRefGoogle Scholar
  22. Girard C, Tinel N, Terrenoire C, Romey G, Lazdunski M, Borsotto M (2002) p11, an annexin II subunit, an auxilary protein associated with the background K(+) channel, TASK-1. EMBO J 21:4439–4448PubMedCrossRefGoogle Scholar
  23. Goldstein SA, Price LA, Rosenthal DN, Pausch MH (1996) ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:13256–13261PubMedCrossRefGoogle Scholar
  24. Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184PubMedCrossRefGoogle Scholar
  25. Gordon JA, Hen R (2006) Treking toward new antidepressants. Nat Neurosci 9:1081–3PubMedCrossRefGoogle Scholar
  26. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004) Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65:443–452PubMedCrossRefGoogle Scholar
  27. Harinath S, Sikdar SK (2004) Trichloroethanol enhances the activity of recombinant human TREK-1 and TRAAK channels. Neuropharmacology 46:750–60PubMedCrossRefGoogle Scholar
  28. Hervieu GJ, Cluderay JE, Gray CW, Green PJ, Ranson JL, Randall AD, Meadows HJ (2001) Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103:899–919PubMedCrossRefGoogle Scholar
  29. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca L, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695PubMedCrossRefGoogle Scholar
  30. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1141PubMedCrossRefGoogle Scholar
  31. Hille B (1992) Ion channels of excitable membranes. Sinauer Associates Inc Sunderland, MassachusettsGoogle Scholar
  32. Honoré E (2007) The neuronal background K2P channels: focus on TREK-1. Nat Rev Neurosci 8:251–261PubMedCrossRefGoogle Scholar
  33. Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976PubMedCrossRefGoogle Scholar
  34. Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci USA 103:6859–6864PubMedCrossRefGoogle Scholar
  35. Ilan N, Goldstein SA (2001) Kcnko: single, cloned potassium leak channels are multi-ion pores. Biophys J 80:241–253PubMedCrossRefGoogle Scholar
  36. Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br J Pharmacol 144:821–829PubMedCrossRefGoogle Scholar
  37. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SAN (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695PubMedCrossRefGoogle Scholar
  38. Kim D (2003) Fatty acid-sensitive two-pore domain K+ channels. Trends Pharmacol Sci 24:648–654PubMedCrossRefGoogle Scholar
  39. Kim D, Fujita A, Horio Y, Kurachi Y (1998) Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ Res 82:513–518PubMedGoogle Scholar
  40. Koh SD, Monaghan KM, Sergeant GP, Ro S, Walker RL, Sanders KM, Horowitz B (2001) TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. J Biol Chem 47:44338–44346CrossRefGoogle Scholar
  41. Lang-Lazdunski L, Blondeau N, Jarretou G, Lazdunski M, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38:564–575PubMedCrossRefGoogle Scholar
  42. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Poly-unsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793PubMedCrossRefGoogle Scholar
  43. Lauritzen I, Chemin J, Honoré E, Jodar M, Guy N, Lazdunski M, Jane Patel A (2005) Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6:642–648PubMedCrossRefGoogle Scholar
  44. Lesage F (2003) Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1–7PubMedCrossRefGoogle Scholar
  45. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Ren Physiol 279:F793–801Google Scholar
  46. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996a) A pH-sensitive yeast outward rectifier K+ channel with two pore domains and novel gating properties. J Biol Chem 271:4183–4187PubMedCrossRefGoogle Scholar
  47. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996b) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011PubMedGoogle Scholar
  48. Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M (1996c) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400–6407PubMedGoogle Scholar
  49. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405PubMedCrossRefGoogle Scholar
  50. Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969–16978PubMedCrossRefGoogle Scholar
  51. Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PiP2-hydrolysis underlies agonist-induced inhibition and regulates voltage-gating of 2-P domain K+ channels. J Physiol 564:117–129PubMedCrossRefGoogle Scholar
  52. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696PubMedCrossRefGoogle Scholar
  53. Maingret F, Lauritzen I, Patel A, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000a) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491PubMedCrossRefGoogle Scholar
  54. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (2000b) Lysophospholipids open the two P domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133PubMedCrossRefGoogle Scholar
  55. Maingret F, Honoré E, Lazdunski M, Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechano- sensitive K+ channel. Biochem Biophys Res Commun 292:339–346PubMedCrossRefGoogle Scholar
  56. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. Coli activated by amphipaths. Nature 348:261–263PubMedCrossRefGoogle Scholar
  57. Maylie J, Adelman JP (2001) Beam me up, Scottie! TREK channels swing both ways. Nat Neurosci 4:457–458PubMedGoogle Scholar
  58. Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, Murdock P, Chapman CG (2000) Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch 439:714–722PubMedCrossRefGoogle Scholar
  59. Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Mol Brain Res 86:101–114PubMedCrossRefGoogle Scholar
  60. Murbartian J, Lei Q, Sando JJ, Bayliss DA (2005) Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 280:30175–30184PubMedCrossRefGoogle Scholar
  61. Niemeyer MI, Cid LP, Valenzuela X, Paeile V, Sepulveda FV (2003) Extracellular conserved cysteine forms an intersubunit disulphide bridge in the KCNK5 (TASK-2) K+ channel without having an essential effect upon activity. Mol Membr Biol 20:185–191PubMedCrossRefGoogle Scholar
  62. O’Connell AD, Morton MJ, Hunter M (2002) Two-pore domain K+ channels-molecular sensors. Biochimica et Biophysica Acta 1566:152–161PubMedCrossRefGoogle Scholar
  63. O’Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport: 14–3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588PubMedCrossRefGoogle Scholar
  64. Patel AJ, Honoré E (2001a) Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95:1013–1025PubMedCrossRefGoogle Scholar
  65. Patel AJ, Honoré E (2001b) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346PubMedCrossRefGoogle Scholar
  66. Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290PubMedCrossRefGoogle Scholar
  67. Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anaesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426PubMedCrossRefGoogle Scholar
  68. Patel AJ, Maingret F, Magnone V, Fosset M, Lazdunski M, Honoré E (2000) TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem 275:28722–28730PubMedCrossRefGoogle Scholar
  69. Patel AJ, Lazdunski M, Honoré E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13:422–428PubMedCrossRefGoogle Scholar
  70. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37–47PubMedCrossRefGoogle Scholar
  71. Reid JD, Lukas W, Shafaatian R, Bertl A, Scheurmannkettner C, Guy HR, North RA (1996) The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Receptors Channels 4:51–62PubMedGoogle Scholar
  72. Renigunta V, Yuan H, Zuzarte M, Rinne S, Koch A, Wischmeyer E, Schlichthorl G, Gao Y, Karschin A, Jacob R, Schwappach B, Daut J, Preisig-Muller R (2006) The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. Traffic 7:168–181PubMedCrossRefGoogle Scholar
  73. Reyes R, Duprat F, Lesage F, Fink M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain potassium channel from human kidney. J Biol Chem 273:30863–30869PubMedCrossRefGoogle Scholar
  74. Sandoz G, Thummler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdunski M, Lesage F (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels. Embo J 25:5864–5872PubMedCrossRefGoogle Scholar
  75. Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythocyte interactions. Proc Natl Acad Sci USA 71:4457–4461PubMedCrossRefGoogle Scholar
  76. Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742PubMedCrossRefGoogle Scholar
  77. Talley EM, Lei Q, Sirois JE, Bayliss DA (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25:399–410PubMedCrossRefGoogle Scholar
  78. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505PubMedGoogle Scholar
  79. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46–56PubMedCrossRefGoogle Scholar
  80. Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829PubMedCrossRefGoogle Scholar
  81. Zhou XL, Vaillant B, Loukin SH, Kung C, Saimi Y (1995) YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett 373:170–176PubMedCrossRefGoogle Scholar

Copyright information

© EBSA 2008

Authors and Affiliations

  • Alexandra Dedman
    • 1
  • Reza Sharif-Naeini
    • 1
  • Joost H. A. Folgering
    • 1
  • Fabrice Duprat
    • 1
  • Amanda Patel
    • 1
  • Eric Honoré
    • 1
    Email author
  1. 1.Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097Université de Nice-Sophia AntipolisValbonneFrance

Personalised recommendations