European Biophysics Journal

, Volume 37, Issue 5, pp 627–638 | Cite as

Analysis of membrane-localized binding kinetics with FRAP

Original Paper


Interactions between plasma membrane-associated proteins on interacting cells are critical for many important biological processes. Few experimental techniques, however, can accurately determine the association and the dissociation rates between such interacting pairs when the two molecules diffuse on apposing membranes or lipid bilayers. In this study, we give a theoretical description of how and when fluorescence recovery after photobleaching (FRAP) experiments can be used to quantify these reaction rates. We analyze the effect of binding on FRAP recovery curves with a reaction–diffusion model and systematically identify different regimes in the parameter space of the association and the dissociation constants for which the full model simplifies into equivalent one-parameter models. Based on this analysis, we propose an experimental protocol that may be used to identify the kinetic parameters of binding in the appropriate parameter regime. We present simulated experiments illustrating our protocol and lay down guidelines for parameter estimation.


Fluorescence recovery after photobleaching Surface binding kinetics Mathematical model Ligand–receptor binding FRAP 



This work was supported by NSERC and MITACS NCE. We are indebted to Salvatore Valitutti for helpful discussions.

Supplementary material

249_2008_286_MOESM1_ESM.pdf (144 kb)
Supplementary material (145 kb)


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov B, Csaki F (eds) 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Axelrod D et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069Google Scholar
  3. Beaudouin J et al (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90(6):1878–1894CrossRefGoogle Scholar
  4. Braga J et al (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15(10):4749–4760CrossRefGoogle Scholar
  5. Braga J et al (2007) A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 92(8):2694–2703CrossRefGoogle Scholar
  6. Bromley SK et al (2001) The immunological synapse and CD28–CD80 interactions. Nat Immunol 2(12):1159–1166CrossRefGoogle Scholar
  7. Campi G et al (2005) Actin and agonist MHC–peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036CrossRefMathSciNetGoogle Scholar
  8. Carrero G et al (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29(1):14–28CrossRefMathSciNetGoogle Scholar
  9. Coombs D, Goldstein B (2005) T cell activation: kinetic proofreading, serial engagement and cell adhesion. J Comput Appl Math 184:121–139MATHCrossRefADSMathSciNetGoogle Scholar
  10. Davis MM et al (2003) Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem 72:717–742CrossRefGoogle Scholar
  11. Dushek O, Coombs D (2007) Improving parameter estimation for cell surface FRAP data. J Biochem Biophys Methods. doi: 10.1016/j.jbbm.2007.07.002
  12. Dustin ML et al (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132(3):465–474CrossRefGoogle Scholar
  13. Dustin ML et al (1997) Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J Biol Chem 272(49):30889–30898CrossRefGoogle Scholar
  14. Ellenberg J et al (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206CrossRefGoogle Scholar
  15. Favier B et al (2001) TCR dynamics on the surface of living T cells. Int Immunol 13(12):1525–1532CrossRefGoogle Scholar
  16. Garland PB (1996) Optical evanescent wave methods for the study of biomolecular interactions. Q Rev Biophys 29:91–117CrossRefGoogle Scholar
  17. Goodwin JS, Kenworthy A (2005) Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 37:154–164CrossRefGoogle Scholar
  18. Grakoui A et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227CrossRefGoogle Scholar
  19. Hinow P et al (2006) The DNA binding activity of p53 displays reaction-diffusion kinetics. Biophys J 91:330–342CrossRefADSGoogle Scholar
  20. Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171CrossRefADSGoogle Scholar
  21. Kenworthy AK et al (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165(5):735–746CrossRefGoogle Scholar
  22. Kim SA, Schwille P (2003) Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr Opin Neurobiol 13(5):583–590CrossRefGoogle Scholar
  23. Klonis N et al (2002) Fluorescence photobleaching analysis for the study of cellular dynamics. Eur Biophys J 31:36–51CrossRefGoogle Scholar
  24. Kohl T et al (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89(4):2770–2782CrossRefMathSciNetGoogle Scholar
  25. Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford, chap 22, pp 138–142. Available online at
  26. Pando B et al (2006) Messages diffuse faster than messengers. Proc Natl Acad Sci USA 14:5338–5342CrossRefADSGoogle Scholar
  27. Rabut G, Ellenberg J (2004) Photobleaching techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, iFRAP and FLIP. In: Goldman RD, Spector DL (eds) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, chap 6, pp 101–127Google Scholar
  28. Rich RI, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotech 11:54–61CrossRefGoogle Scholar
  29. Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Nat Acad Sci USA 72:3111–3113CrossRefADSGoogle Scholar
  30. Sbalzarini I et al (2006) Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90:878–885CrossRefGoogle Scholar
  31. Schlessinger J et al (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73(7):2409–2413CrossRefADSGoogle Scholar
  32. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730CrossRefGoogle Scholar
  33. Sprague BL et al (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495CrossRefGoogle Scholar
  34. Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91CrossRefGoogle Scholar
  35. Varma R et al (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127CrossRefGoogle Scholar
  36. Wu M et al (2004) Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc Natl Acad Sci USA 101(38):13798–13803CrossRefADSGoogle Scholar
  37. Zal T, Gascoigne NR (2004) Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr Opin Immunol 16:418CrossRefGoogle Scholar
  38. Zhu D-M et al (2007) Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 92:1022–1034CrossRefGoogle Scholar

Copyright information

© EBSA 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Institute of Applied MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations