European Biophysics Journal

, Volume 37, Issue 5, pp 603–611 | Cite as

Complementing structural information of modular proteins with small angle neutron scattering and contrast variation

  • J. G. GrossmannEmail author
  • A. J. Callaghan
  • M. J. Marcaida
  • B. F. Luisi
  • F. H. Alcock
  • K. Tokatlidis
Original Paper


Many macromolecules in the cell function by forming multi-component assemblies. We have applied the technique of small angle neutron scattering to study a nucleic acid–protein complex and a multi-protein complex. The results illustrate the versatility and applicability of the method to study macromolecular assemblies. The neutron scattering experiments, complementing X-ray solution scattering data, reveal that the conserved catalytic domain of RNase E, an essential ribonuclease in Escherichia coli (E. coli), undergoes a marked conformational change upon binding a 5′monophosphate–RNA substrate analogue. This provides the first evidence in support of an allosteric mechanism that brings about RNA substrate cleavage. Neutron contrast variation of the multi-protein TIM10 complex, a mitochondrial chaperone assembly comprising the subunits Tim9 and Tim10, has been used to determine a low-resolution shape reconstruction of the complex, highlighting the integral subunit organization. It shows characteristic features involving protrusions that could be assigned to the six subunits forming the complex.


Small angle neutron scattering Contrast variation X-ray scattering RNase E Allosteric mechanism TIM10 



Small angle neutron scattering


Small angle X-ray scattering

RNase E

Ribonuclease E


Translocase of the intermembrane space



The work on RNase E was supported by the Wellcome Trust. We thank Martyn Symmons and Martin Moncrieffe for stimulating discussions and invaluable advice. The work on TIM10 was supported by funds from IMBB-FORTH. The ILL and STFC Daresbury Laboratory are acknowledged for beamtime. We are also very grateful to Peter Timmins at the ILL and Michael Haertlein at the ILL-EMBL-PSB Deuteration Laboratory in Grenoble for their excellent support.


  1. Callaghan AJ, Grossmann JG, Redko YU, Ilag LL, Moncrieffe MC, Symmons MF, Robinson CV, McDowall KJ, Luisi BF (2003) Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain. Biochemistry 42:13848–13855CrossRefGoogle Scholar
  2. Callaghan AJ, Marcaida MJ, Stead J, McDowall KJ, Scott W, Luisi BF (2005) Structure of E. coli RNase E catalytic domain and implications for RNA processing and turnover. Nature 437:1187–1191CrossRefADSGoogle Scholar
  3. Curran SP, Leuenberger D, Oppliger W, Koehler CM (2002) The Tim9p-Tim10p complex binds to the transmembrane domains of ADP/ATP carrier. EMBO J 21:942–953CrossRefGoogle Scholar
  4. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York Google Scholar
  5. Ghosh RE, Egelhaaf SU, Rennie AR (1998) A computing guide for small-angle scattering experiments, Institut Laue-Langevin, ILL98GH14TGoogle Scholar
  6. Grossmann JG (2007) Biological solution scattering: recent achievements and future challenges. J Appl Cryst 40:s217–s222CrossRefMathSciNetGoogle Scholar
  7. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  8. Jiang X, Belasco JG (2004) Catalytic activation of multimeric RNase E and RNase G by 5′-monophosphorylated RNA. Proc Natl Acad Sci USA 101:9211–9216CrossRefADSGoogle Scholar
  9. Koehler CM, Merchant S, Oppliger W, Schmid K, Jarosch D, Dolfini L, Junne T, Schatz G, Tokatlidis K (1998) Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J 17:6477–6486CrossRefGoogle Scholar
  10. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286CrossRefGoogle Scholar
  11. Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41CrossRefGoogle Scholar
  12. Lu H, Golovanov AP, Alcock F, Grossmann JG, Allen S, Lian L-Y, Tokatlidis K (2004) The structural basis of the TIM10 chaperone assembly. J Biol Chem 279:18959–18966CrossRefGoogle Scholar
  13. Mackie GA (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395:720–723CrossRefADSGoogle Scholar
  14. McDowall KJ, Lin-Chao S, Cohen SN (1994) A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269:10790–10796Google Scholar
  15. Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349CrossRefGoogle Scholar
  16. Redko Y, Tock MR, Adams CJ, Kaberdin VR, Grasby JA, McDowall KJ (2003) Determination of the catalytic parameters of the N-terminal half of E. coli ribonuclease E and the identification of critical functional groups in RNA substrates. J Biol Chem 278:44001–44008CrossRefGoogle Scholar
  17. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503CrossRefGoogle Scholar
  18. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886CrossRefGoogle Scholar
  19. Svergun DI, Richard S, Koch M, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by X-ray and neutron scattering Proc Natl Acad Sci USA 95:2267–2272CrossRefADSGoogle Scholar
  20. Vergnolle MAS, Alcock FH, Petrakis N, Tokatlidis K (2007) Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells. J Mol Biol 371:1315–1324CrossRefGoogle Scholar
  21. Vial S, Lu H, Allen S, Savory P, Thornton D, Sheehan J, Tokatlidis K (2002) Assembly of Tim9 and Tim10 into a functional chaperone. J Biol Chem 277:36100–36108CrossRefGoogle Scholar
  22. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864CrossRefGoogle Scholar
  23. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006) Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 21:123–133CrossRefGoogle Scholar

Copyright information

© EBSA 2008

Authors and Affiliations

  • J. G. Grossmann
    • 1
    Email author
  • A. J. Callaghan
    • 2
    • 4
  • M. J. Marcaida
    • 2
  • B. F. Luisi
    • 2
  • F. H. Alcock
    • 3
  • K. Tokatlidis
    • 3
  1. 1.Molecular Biophysics Group, STFC Daresbury LaboratoryDaresbury Science and Innovation CampusWarringtonUK
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK
  3. 3.Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology HellasCreteGreece
  4. 4.Biophysics Laboratories, Institute of Biomedical and Biomolecular ScienceUniversity of PortsmouthPortsmouthUK

Personalised recommendations