Advertisement

European Biophysics Journal

, Volume 37, Issue 3, pp 333–344 | Cite as

Metal effects on the membrane interactions of amyloid-β peptides

  • John D. Gehman
  • Caitlin C. O’Brien
  • Fazel Shabanpoor
  • John D. Wade
  • Frances Separovic
Original Paper

Abstract

Aβ(1–42) peptide, found as aggregated species in Alzheimer’s disease brain, is linked to the onset of dementia. We detail results of 31P and 2H solid-state NMR studies of model membranes with Aβ peptides and the effect of metal ions (Cu2+ and Zn2+), which are found concentrated in amyloid plaques. The effects on the lipid bilayer and the peptide structure are different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induce formation of smaller vesicles, but not when Aβ(1–42) is associated with the bilayer membrane. Aβ(25–35), a fragment from the C-terminal end of Aβ(1–42), which lacks the metal coordinating sites found in the full length peptide, is neurotoxic to cortical cortex cell cultures. Addition of metal ions has little effect on membrane bilayers with Aβ(25–35) peptides. 31P magic angle spinning NMR data show that Aβ(1–42) and Aβ(1–42)-Cu2+ complexes interact at the surface of anionic phospholipid membranes. Incorporated peptides, however, appear to disrupt the membrane more severely than associated peptides. Solid-state 13C NMR was used to compare structural changes of Aβ(1–42) to those of Aβ(25–35) in model membrane systems of anionic phospholipids and cholesterol. The Aβ peptides appeared to have an increase in β-strand structure at the C-terminus when added to phospholipid liposomes. The inclusion of Cu2+ also influenced the observed chemical shift of residues from the C-terminal half, providing structural clues for the lipid-associated Aβ/metal complex. The results point to the complex pathway(s) for toxicity of the full-length peptide.

Keywords

Amyloid Aβ Cholesterol Metal interactions Peptide–lipid interactions Phospholipid membranes Solid-state NMR Structure Alzheimer’s disease 

Abbreviations

AD

Alzheimer’s disease

APP

Amyloid precursor protein

(CP)MAS

(Cross-polarisation) Magic angle spinning

CQ

Clioquinol

CSA

Chemical shift anisotropy

HFIP

Hexafluoroisopropanol

LUV

Large unilamellar vesicles

MLV

Multilamellar vesicles

NMR

Nuclear magnetic resonance

(d)POPC

sn-1 (deuterated) Palmitoyl, sn-2 oleoyl phosphatidylcholine

POPS

Palmitoyloleoylphosphatidylserine

REDOR

Rotational-echo double resonance

SS-NMR

Solid-state NMR

Notes

Acknowledgments

The Australian Research Council is gratefully acknowledged for financial support by award of an ARC Discovery grant to FS and JDW. We thank John Hanna for helpful discussion.

References

  1. Aime S, Bertini I, Luchinat C (1996) Considerations on high resolution solid state NMR in paramagnetic molecules. Coord Chem Rev 150:221–242CrossRefGoogle Scholar
  2. Ali FE, Barnham KJ, Barrow CJ, Separovic F (2004) Metal catalyzed oxidative damage and oligomerization of the amyloid-β peptide (Aβ) of Alzheimer’s disease. Aust J Chem 57:511–518CrossRefGoogle Scholar
  3. Alzheimer A (1907) Über eigenartige Erkrankung der Hirinde. Allg Zschr Psychiat U Psychich-gerchtl Med 64:146–148Google Scholar
  4. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659CrossRefADSGoogle Scholar
  5. Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–1803CrossRefADSGoogle Scholar
  6. Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1–40) and (1–42) peptides. FASEB J 16:1526–1536CrossRefGoogle Scholar
  7. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with Alzheimer Aβ peptides: Identification of a attomolar affinity copper binding site on Aβ1–42. J Neurochem 75:1219–1233CrossRefGoogle Scholar
  8. Balla MS, Bowie JH, Separovic F (2004) Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J 33:109–116CrossRefGoogle Scholar
  9. Brown MF, Seelig J (1978) Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry 17:381–384CrossRefGoogle Scholar
  10. Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow CJ, Wade JD, Masters CL, Cherny RA, Curtain CC, Bush AI, Cappai R (2003) Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 178:42959–42965CrossRefGoogle Scholar
  11. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 18:1427–1429Google Scholar
  12. Biological Magnetic Resonance Data Bank (2007) The University of Wisconsin, Madison. http://www.bmrb.wisc.edu. Cited 18 Aug 2007
  13. Bokvist M, Lindström F, Watts A, Gröbner G (2004) Two types of Alzheimer’s β-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049CrossRefGoogle Scholar
  14. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554Google Scholar
  15. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214CrossRefGoogle Scholar
  16. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676CrossRefGoogle Scholar
  17. Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid beta-peptide 1–40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297Google Scholar
  18. Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of A beta-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272:22987–22990CrossRefGoogle Scholar
  19. Christian H, Simon G, Victor AG, Patrick H, Mallot HA (2007) Soluble beta-amyloid[25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol 561:85–90CrossRefGoogle Scholar
  20. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077CrossRefGoogle Scholar
  21. Cornell BA, Hiller RG, Raison J, Separovic F, Smith R, Vary JC, Morris C (1983) Biological membranes are rich in low frequency motion. Biochim Biophys Acta 732:473–478CrossRefGoogle Scholar
  22. Cornell BA, Weir LE, Separovic F (1988) The effect of gramicidin A on phospholipid bilayers. Eur Biophys J 16:113–119Google Scholar
  23. Curtain CC, Separovic F, Rivett D, Kirkpatrick A, Waring AJ, Gordon LM, Azad AA (1994) The amino-terminal region of the HIV-1 Nef protein is fusogenic. AIDS Res Hum Retroviruses 10:1231–1240CrossRefGoogle Scholar
  24. Demeester N, Baier G, Enzinger C, Goethals M, Vandekerckhove J, Rosseneu M, Labeur C (2000) Apoptosis induced in neuronal cells by C-terminal amyloid β-fragments is correlated with their aggregation properties in phospholipid membranes. Mol Membr Biol 17:219–228CrossRefGoogle Scholar
  25. de Planque MRR, Rijkers DTS, Fletcher J, Liskamp RMJ, Separovic F (2004) The αM1 segment of the nicotinic acetylcholine receptor exhibits conformational flexibility in a membrane environment. Biochim Biophys Acta 1665:40–47CrossRefGoogle Scholar
  26. Donnelly PS, Xiao Z, Wedd AG (2007) Copper and Alzheimer’s disease. Curr Opin Chem Biol 11:128–133CrossRefGoogle Scholar
  27. Dufourc EJ, Mayer C, Stohrer J, Althoff G, Kothe G (1992) Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys J 61:42–57Google Scholar
  28. Fassbender K, Masters C, Beyreuther K (2001) Alzheimer’s disease: molecular concepts and therapeutic targets. Naturwissenschaften 88:261–267CrossRefADSGoogle Scholar
  29. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefADSGoogle Scholar
  30. Gehman JD, Separovic F (2006) Solid-State NMR of Membrane-Active Proteins and Peptides. In: Webb GA (ed) Modern magnetic resonance. Springer, Heidelberg, pp 301–307CrossRefGoogle Scholar
  31. Gehman JD, Separovic F, Lu K, Mehta AK (2007) Boltzmann statistics rotational-echo double-resonance analysis. J Phys Chem B 111:7802–7811CrossRefGoogle Scholar
  32. Glenner GG, Wong CW (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890CrossRefGoogle Scholar
  33. Griffin RG, Powers L, Pershan PS (1978) Head-group conformation in phospholipids: a phosphorus-31 nuclear magnetic resonance study of oriented monodomain dipalmitoylphosphatidylcholine bilayers. Biochemistry 17:2718–2722CrossRefGoogle Scholar
  34. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407CrossRefGoogle Scholar
  35. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884Google Scholar
  36. Hartzell CJ, Whitfield M, Oas TG, Drobny GP (1987) Determination of the 15N and 13C chemical shift tensors of L-[13C]alanyl-L-[15N]alanine from the dipole-coupled powder patterns. J Am Chem Soc 109:5966–5969CrossRefGoogle Scholar
  37. Herzfeld J, Griffin RG, Haberkorn RA (1978) Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry 17:2711–2718CrossRefGoogle Scholar
  38. Herzfeld J, Berger AE (1980) Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys 73:6021–6030CrossRefADSGoogle Scholar
  39. Jick J, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631CrossRefGoogle Scholar
  40. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736CrossRefADSGoogle Scholar
  41. Kanski J, Varadarajan S, Aksenova M, Butterfield DA (2001) Role of glycine-33 and methionine-35 in Alzheimer’s amyloid β-peptide 1–42-associated oxidative stress and neurotoxicity. Biochim Biophys Acta 1586:190–198Google Scholar
  42. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefADSGoogle Scholar
  43. Kohler SJ, Klein MP (1976) 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: applications to head-group motion in model membranes. Biochemistry 15:967–974CrossRefGoogle Scholar
  44. Kohler SJ, Klein MP (1977) Orientation and dynamics of phospholipid head groups in bilayers and membranes determined from 31P nuclear magnetic resonance chemical shielding tensors. Biochemistry 16:519–526CrossRefGoogle Scholar
  45. Kurland RJ, McGarvey BR (1970) Isotropic NMR shifts in transition metal complexes: the calculation of the Fermi contact and pseudocontact terms. J Magn Reson 2:286–301Google Scholar
  46. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453CrossRefADSGoogle Scholar
  47. Lau T-L, Barnham KJ, Curtain CC, Masters CL, Separovic F (2003) Magnetic resonance studies of the β-amyloid peptide. Aust J Chem 56:349–356CrossRefGoogle Scholar
  48. Lau T-L, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F (2006) Amyloid-β peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759–770CrossRefGoogle Scholar
  49. Lau T-L, Gehman JD, Wade JD, Masters CL, Barnham KJ, Separovic F (2007a) Cholesterol and Clioquinol modulation of Aβ(1–42) interaction with phospholipids bilayers and metals. Biochim Biophys Acta 1768:2400–2408CrossRefGoogle Scholar
  50. Lau T-L, Gehman JD, Wade JD, Perez K, Masters CL, Barnham KJ, Separovic F (2007b) Membrane interactions and the effect of metal ions of the amyloidogenic fragment Aβ(25–35) in comparison to Aβ(1–42). Biochim Biophys Acta 1768:2400–2408CrossRefGoogle Scholar
  51. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357CrossRefADSGoogle Scholar
  52. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287CrossRefADSGoogle Scholar
  53. Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300–3316CrossRefADSGoogle Scholar
  54. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci 82:4245–4249CrossRefADSGoogle Scholar
  55. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866CrossRefGoogle Scholar
  56. Mehring M (1983) Principles of high resolution NMR in solids. Springer, HeidelbergGoogle Scholar
  57. Oas TG, Hartzell CJ, McMahon TJ, Drobny GP, Dahlquist FW (1987) The carbonyl 13C chemical shift tensors of five peptides determined from 15N dipole-coupled chemical shift powder patterns. J Am Chem Soc 109:5956–5962CrossRefGoogle Scholar
  58. Pake GE (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J Chem Phys 16:327–336CrossRefADSGoogle Scholar
  59. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747CrossRefADSGoogle Scholar
  60. Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 90:10836–10840CrossRefADSGoogle Scholar
  61. Saitô H (1983) Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state NMR. Magn Reson Chem 24:835–852CrossRefGoogle Scholar
  62. Saitô H, Tuzi S, Yamaguchi S, Kimura S, Tanio M, Kamihira M, Nishimura K, Naito A (1998) Conformation and dynamics of membrane proteins and biologically active peptides as studied by high-resolution 13C NMR. J Mol Struct 441:137–148CrossRefADSGoogle Scholar
  63. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, San DiegoGoogle Scholar
  64. Seelig J, Gally H (1976) Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15:5199–5204CrossRefGoogle Scholar
  65. Separovic F, Smith R, Yannoni CS, Cornell BA (1990) Molecular sequence effect on the 13C carbonyl chemical shift shielding tensor. J Am Chem Soc 112:8324–8328CrossRefGoogle Scholar
  66. Separovic F, Cornell B, Pace R (2000) Orientation dependence of NMR relaxation time, T, in lipid bilayers. Chem Phys Lipids 107:159–167CrossRefGoogle Scholar
  67. Separovic F, Drechsler A, Lau T-L (2004) Magnetic moments: membrane protein structures by NMR. Chem Aust 71(1):4–7Google Scholar
  68. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731CrossRefADSGoogle Scholar
  69. Sisodia SS (1992) β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079CrossRefADSGoogle Scholar
  70. Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau T-L, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ (2006) Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281:15145–15154CrossRefGoogle Scholar
  71. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990CrossRefGoogle Scholar
  72. Sparks DL, Hunsaker JC, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR (1990) Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 11:601–607CrossRefGoogle Scholar
  73. Stark RE, Jelinski LW, Ruben DJ, Torchia DA, Griffin RG (1983) 13C chemical shift and 13C-15N dipolar tensors for the peptide bond: [1–13C]glycyl[15N]glycine·HCl·H2O. J Magn Reson 55:266–273Google Scholar
  74. Stejskal EO, Schaefer J, Waugh JS (1977) Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson 28:105–112Google Scholar
  75. Stockton GW, Smith IC (1976) A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids 17:251–263CrossRefGoogle Scholar
  76. Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479CrossRefGoogle Scholar
  77. Suckling KE, Boyd GS (1976) Interactions of the cholesterol side-chain with egg lecithin. A spin label study. Biochim Biophys Acta 436:295–300CrossRefGoogle Scholar
  78. Tickler AK, Wade JD, Separovic F (2005) The role of A beta peptides in Alzheimer’s disease. Protein Peptide Lett 12:513–519CrossRefGoogle Scholar
  79. Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 123:5625–5631CrossRefGoogle Scholar
  80. Watwe RM, Bellare JR (1995) Manufacture of liposomes—a review. Curr Sci 68:715–724Google Scholar
  81. Yeagle PL, Hutton WC, Huang CH, Martin RB (1975) Headgroup conformation and lipid- cholesterol association in phosphatidylcholine vesicles: a 31P{1H} nuclear Overhauser effect study. Proc. Natl Acad Sci USA 72:3477–3481CrossRefADSGoogle Scholar
  82. Yeagle PL, Hutton WC, Huang CH, Martin RB (1977) Phospholipid head-group conformations; intermolecular interactions and cholesterol effects. Biochemistry 16:4344–4349CrossRefGoogle Scholar
  83. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide1–42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529CrossRefGoogle Scholar

Copyright information

© EBSA 2008

Authors and Affiliations

  • John D. Gehman
    • 1
  • Caitlin C. O’Brien
    • 1
  • Fazel Shabanpoor
    • 1
    • 2
  • John D. Wade
    • 2
  • Frances Separovic
    • 1
  1. 1.School of Chemistry, Bio21 InstituteThe University of MelbourneMelbourneAustralia
  2. 2.Howard Florey InstituteUniversity of MelbourneMelbourneAustralia

Personalised recommendations