European Biophysics Journal

, Volume 36, Issue 8, pp 919–931 | Cite as

Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments

  • Louic S. Vermeer
  • Bert L. de Groot
  • Valérie Réat
  • Alain Milon
  • Jerzy CzaplickiEmail author


Order parameters from deuterium NMR are often used to validate or calibrate molecular dynamics simulations. This paper gives a short overview of the literature in which experimental order parameters from 2H NMR are compared to those calculated from MD simulations. The different ways in which order parameters from experiment are used to calibrate and validate simulations are reviewed. In the second part of this review, a case study of cholesterol in a DMPC bilayer is presented. It is concluded that the agreement between experimental data and simulation is favorable in the hydrophobic region of the membrane, for both the phospholipids and cholesterol. In the interfacial region the agreement is less satisfactory, probably because of the high polarity of this region which makes the correct computation of the electrostatics more complex.


Deuterium Molecular dynamics simulation MD Solid state NMR Cholesterol DMPC 



L.S. Vermeer wishes to acknowledge financial support from the European Marie Curie program (BIOMEM). The 2H NMR spectra presented in the case study were recorded on spectrometers financed with the help of European Structural funds, Région Midi-Pyrenées and CNRS. The authors would like to thank Ira Tremmel for critically reading the manuscript.


  1. Anézo C, de Vries AH et al (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433Google Scholar
  2. Anisimov VM, Lamoureux G et al (2005) Determination of electrostatic parameters for a polarizable force field based on the classical drude oscillator. J Chem Theory Comput 1:153–168Google Scholar
  3. Appelt C, Eisenmenger F et al (2005) Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations. Biophys J 89:2296–2306Google Scholar
  4. Ash WL, Zlomislic MR et al (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189Google Scholar
  5. Aussenac F, Laguerre M et al (2003) Detailed structure and dynamics of bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H nmr and molecular mechanics study. Langmuir 19:10468–10479Google Scholar
  6. Bandyopadhyay S, Shelley JC et al (2001) Molecular dynamics study of the effect of surfactant on a biomembrane. J Phys Chem B 105:5979–5986Google Scholar
  7. Benz RW, Castro-Román F et al (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:805–817Google Scholar
  8. Berendsen HJC, Postma JPM et al (1981) Interaction models for water in relation to protein hydration. In: Pullman B (eds) Intermolecular forces, D. Reidel Publishing Company, Dordrecht, pp 331–342Google Scholar
  9. Berendsen HJC, Postma JPM et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690ADSGoogle Scholar
  10. Berger O, Edholm O et al (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013Google Scholar
  11. Berkowitz ML, Bostick DL et al (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106:1527–1539Google Scholar
  12. Bloom M, Evans E et al (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 24:293–397Google Scholar
  13. Böckmann RA, Hac A et al (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655Google Scholar
  14. Burnett LJ, Muller BH (1971) Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14. J Chem Phys 55:5829–5831ADSGoogle Scholar
  15. Castro-Román F, Benz RW et al (2006) Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:24157–24164Google Scholar
  16. Chandrasekhar I, Kastenholz M et al (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32:67–77Google Scholar
  17. Chapman D, Owens NF et al (1969) Mixed monolayers of phospholipids and cholesterol. Biochim Biophys Acta 183:458–465Google Scholar
  18. Chiu S, Jakobsson E et al (2001) Combined monte carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. Biophys J 80:1104–1114Google Scholar
  19. Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382Google Scholar
  20. Darden T, York D et al (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092ADSGoogle Scholar
  21. Dave PC, Tiburu EK et al (2004) Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Biophys J 86:1564–1573Google Scholar
  22. Douliez JP, Léonard A et al (1995) Restatement of order parameters in biomembranes: calculation of C–C bond order parameters from C–D quadrupolar splittings. Biophys J 68:1727–1739Google Scholar
  23. Douliez JP, Ferrarini A et al (1998) On the relationship between C–C and C–D order parameters and its use for studying the conformation of lipid acyl chains in biomembranes. J Chem Phys 109:2513–2518ADSGoogle Scholar
  24. Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832Google Scholar
  25. Egberts E, Marrink SJ et al (1994) Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436Google Scholar
  26. Essmann U, Perera L et al (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593ADSGoogle Scholar
  27. Falck E, Patra M et al (2004) Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091Google Scholar
  28. Feller SE, Venable RM et al (1997) Computer simulation of a dppc phospholipid bilayer: structural changes as a function of molecular surface area. Langmuir 13:6555–6561Google Scholar
  29. Feller SE, Pastor RW (1999) Constant surface tension simulations of lipid bilayers: the sensitivity of surface areas and compressibilities. J Chem Phys 111:1281–1287ADSGoogle Scholar
  30. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223Google Scholar
  31. Feller SE, Brown CA et al (2002) Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J 82:1396–1404Google Scholar
  32. Greenwood AI, Tristram-Nagle S et al (2006) Partial molecular volumes of lipids and cholesterol. Chem Phys Lipids 143:1–10Google Scholar
  33. Heller H, Schaefer M et al (1993) Molecular dynamics simulations of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360Google Scholar
  34. Hénin J, Chipot C (2006) Hydrogen-bonding patterns of cholesterol in lipid membranes. Chem Phys Lett 425:329–335ADSGoogle Scholar
  35. Henriksen J, Rowat AC et al (2006) Universal behavior of membranes with sterols. Biophys J 90:1639–1649Google Scholar
  36. Hess B, Bekker H et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472Google Scholar
  37. Hofsäß C, Lindahl E et al (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206Google Scholar
  38. Högberg CJ, Lyubartsev AP (2006) A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:14326–14336Google Scholar
  39. Husslein T, Newns DM et al (1998) Constant pressure and temperature molecular-dynamics simulation of the hydrated diphtanolphosphatidylcholine lipid bilayer. J Chem Phys 109:2826–2832ADSGoogle Scholar
  40. Hyvønen MT, Kovanen PT (2005) Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds. Eur Biophys J 34:294–305Google Scholar
  41. Jensen MØ, Mouritsen OG (2004) Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226Google Scholar
  42. Jensen MØ, Mouritsen OG et al (2004) Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. Biophys J 86:3556–3575Google Scholar
  43. Kandasamy SK, Larson RG (2006a) Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim Biophys Acta 1758:1274–1284Google Scholar
  44. Kandasamy SK, Larson RG (2006b) Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. Biophys J 90:2326–2343Google Scholar
  45. Koubi L, Tarek M et al (2000) Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J 78:800–811Google Scholar
  46. Lafleur M, Fine B et al (1989) Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J 56:1037–1041Google Scholar
  47. Lafleur M, Cullis PR et al (1990) Modulation of the orientational order profile of the lipid acyl chain in the Lα phase. Eur Biophys J 19:55–62Google Scholar
  48. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87Google Scholar
  49. Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol BioSyst 1:203–212ADSGoogle Scholar
  50. Lee BW, Faller R et al (2005) Sructural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilib 228–229:135–140Google Scholar
  51. Leekumjorn S, Sum AK (2006) Molecular simulation study of structural and dynamic properties of mixed dppc/dppe bilayers. Biophys J 90:3951–3965Google Scholar
  52. Léonard A, Escrive C et al (2001) Location of cholesterol in dmpc membranes. a comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17:2019–2030Google Scholar
  53. Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433Google Scholar
  54. Lindahl E, Hess B et al (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. Internet: http://www.gromacs.orgGoogle Scholar
  55. López Cascales J, Otero TF et al (2006) Model of an asymmetric dppc/dpps membrane: effect of asymmetry on the lipid properties. a molecular dynamics simulation study. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:2358–2363Google Scholar
  56. Marrink S, Mark A (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127Google Scholar
  57. Marsan MP, Muller I et al (1999) Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J 76:351–359Google Scholar
  58. Marsh D (2003a) Lipid interactions with transmembrane proteins. Cell Mol Life Sci 60:1575–1580Google Scholar
  59. Marsh D (2003b) Lipid-binding proteins: structure of the phospholipid ligands. Protein Sci 12:2109–2117Google Scholar
  60. Marsh D, Páli T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–141Google Scholar
  61. McCabe MA, Wassall SR (1997) Rapid deconvolution of NMR powder spectra by weighted fast fourier transformation. Solid State Nucl Magn Reson 10:53–61Google Scholar
  62. Merz KM (1997) Molecular dynamics simulations of lipid bilayers. Curr Opin Struct Biol 7:511–517Google Scholar
  63. Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663:19–51Google Scholar
  64. Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113Google Scholar
  65. Mukhopadhyay P, Monticelli L et al (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609Google Scholar
  66. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195Google Scholar
  67. Norberg J, Nilsson L (2003) Advances in biomolecular simulations: methodology and recent applications. Q Rev Biophys 36:257–306Google Scholar
  68. Ohvo-Rekilä H, Ramstedt B et al (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97Google Scholar
  69. Oldfield E, Chapman D et al (1971) Deuteron resonance: a novel approach to the study of hydrocarbon chain mobility in membrane systems. FEBS Lett 16:102–104Google Scholar
  70. Palmo K, Mannfors B et al (2003) Potential energy functions: from consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 68:383–394Google Scholar
  71. Pandit SA, Bostick D et al (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750Google Scholar
  72. Pasenkiewicz-Gierula M, Murzyn K et al (2000) Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim Pol 47:601–611Google Scholar
  73. Pastor RW, Venable RM et al (1991) Model for the structure of the lipid bilayer. Proc Natl Acad Sci USA 88:892–896ADSGoogle Scholar
  74. Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15Google Scholar
  75. Patra M, Karttunen M et al (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645Google Scholar
  76. Patra M, Karttunen M et al (2004) Lipid bilayers drive to a wrong lane in molecular dynamics simulations by subtle changes in long-range interactions. J Phys Chem B 108:4485–4494Google Scholar
  77. Patra M, Salonen E et al (2006) Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90:1121–1135Google Scholar
  78. Petrache HI, Tu K et al (1999) Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J 76:2479–2487Google Scholar
  79. Petrache HI, Dodd SW et al (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192Google Scholar
  80. Renault M, Réat V et al (2006) Giant vesicles as an efficient intermediate for 2H NMR analyses of proteoliposomes in water suspension and in oriented bilayers. C R Chimie 9:401–407Google Scholar
  81. Róg T, Pasenkiewicz-Gierula M (2006) Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study. Biochimie 88:449–460Google Scholar
  82. Sachs JN, Nanda H et al (2004) Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J 86:3772–3782Google Scholar
  83. Scott HL (2002) Modeling the lipid component of membranes. Curr Opin Struct Biol 12:495–502Google Scholar
  84. Seelig J, Niederberger W (1974) Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. a deuterium magnetic resonance study. J Am Chem Soc 96:2069–2072Google Scholar
  85. Seelig A, Seelig J (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845Google Scholar
  86. Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10:353–418Google Scholar
  87. Shinoda W, Namiki N et al (1997) Molecular dynamics study of a lipid bilayer: convergence, structure, and long-time dynamics. J Chem Phys 106:5731–5743ADSGoogle Scholar
  88. Smondyrev AM, Berkowitz ML (1999a) Molecular dynamics simulation of dppc bilayer in dmso. Biophys J 76:2472–2478CrossRefGoogle Scholar
  89. Smondyrev AM, Berkowitz ML (1999b) Molecular dynamics study of Sn-1 and Sn-2 chain conformations in dipalmitoylphosphatidylcholine membranes. J Chem Phys 110:3981–3985ADSGoogle Scholar
  90. Smondyrev AM, Berkowitz ML (1999c) United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system. J Comput Chem 20:531–545Google Scholar
  91. Soubias O, Jolibois F et al (2004) Understanding sterol-membrane interactions, part ii: complete 1h and 13c assignments by solid-state nmr spectroscopy and determination of the hydrogen-bonding partners of cholesterol in a lipid bilayer. Chemistry 10:6005–6014Google Scholar
  92. Van der Spoel D, Lindahl E et al (2005) GROMACS: fast, flexible and free. J Comput Chem 26:701–1719Google Scholar
  93. Sternin E, Zaraiskaya T et al (2006) Changes in molecular order across the lamellar-to-inverted hexagonal phase transition depend on the position of the double-bond in mono-unsaturated phospholipid dispersions. Chem Phys Lipids 140:98–108Google Scholar
  94. Stockton GW, Polnaszek CF et al (1976) Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. a deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry 15:954–966Google Scholar
  95. Suits F, Pitman MC et al (2005) Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. J Chem Phys 122:244714ADSGoogle Scholar
  96. Sum AK, Faller R et al (2003) Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 85:2830–2844Google Scholar
  97. Sum AK, de Pablo JJ (2003) Molecular simulation study on the influence of dimethylsulfoxide on the structure of phospholipid bilayers. Biophys J 85:3636–3645Google Scholar
  98. Swart M, van Duijnen P (2006) DRF90: a polarizable force field. Mol Simul 32:471–484zbMATHGoogle Scholar
  99. Takaoka Y, Pasenkiewicz-Gierula M et al (2000) Molecular dynamics generation of nonarbitrary membrane models reveals lipid orientational correlations. Biophys J 79:3118–3138Google Scholar
  100. Tang YZ, Chen WZ et al (1999) Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur Biophys J 28:478–488Google Scholar
  101. Tieleman DP, Marrink SJ et al (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270Google Scholar
  102. Tieleman DP, Biggin PC et al (2001) Simulation approaches to ion channel structure-function relationships. Q Rev Biophys 34:473–561Google Scholar
  103. Tieleman DP (2006) Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters. Clin Exp Pharmacol Physiol 33:893–903Google Scholar
  104. Tobias DJ (2001) Electrostatics calculations: recent methodological advances and applications to membranes. Curr Opin Struct Biol 11:253–261Google Scholar
  105. Vogel A, Katzka CP et al (2005) Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR. J Am Chem Soc 127:12263–12272Google Scholar
  106. De Vries AH, Chandrasekhar I et al (2005) Molecular dynamics simulations of phospholipid bilayers: Influence of artificial periodicity, system size, and simulation time. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 109:11643–11652Google Scholar
  107. Wohlert J, Edholm O (2006) Dynamics in atomistic simulations of phospholipid membranes: nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys 125:204703ADSGoogle Scholar
  108. Zaraiskaya T, Jeffrey KR (2005) Molecular dynamics simulations and 2H NMR study of the GalCer/dppg lipid bilayer. Biophys J 88:4017–4031Google Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  • Louic S. Vermeer
    • 1
  • Bert L. de Groot
    • 2
  • Valérie Réat
    • 1
  • Alain Milon
    • 1
  • Jerzy Czaplicki
    • 1
    Email author
  1. 1.IPBS (Institute of Pharmacology and Structural Biology), CNRS, UPSUniversité de ToulouseToulouseFrance
  2. 2.Computational Biomolecular Dynamics GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations