Advertisement

European Biophysics Journal

, Volume 36, Issue 8, pp 1015–1018 | Cite as

A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40

  • Mouna Marrakchi
  • Jasmina Vidic
  • Nicole Jaffrezic-Renault
  • Claude Martelet
  • Edith Pajot-Augy
Biophysics Letter

Abstract

This work shows the feasibility of an olfactory biosensor based on the immobilization of Saccharomyces cerevisiae yeast cells genetically modified to express the human olfactory receptor OR17-40 onto interdigitated microconductometric electrodes. This olfactory biosensor has been applied to the detection of its specific odorant (helional) with a high sensitivity (threshold 10−14 M). In contrast, no significant response was observed using a non-specific odorant (heptanal), which suggests a good selectivity. Thus, this work may represent a first step towards a new kind of bioelectronic noses based on whole yeast cells and allowing a real time monitoring of olfactory receptor activation.

Keywords

Olfactory biosensor Conductometric electrodes Odorant Human olfactory receptor 

Abbreviations

OR

Olfactory receptor

PBS

Sodium phosphate buffer saline

SSTR2

Somatostatin receptor 2

DMSO

Dimethylsulfoxide

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187CrossRefGoogle Scholar
  2. Erlenbach I, Kostenis E, Schmidt C, Hamdan FF, Pausch MH, Wess J (2001) Functional expression of M(1), M(3) and M(5) muscarinic acetylcholine receptors in yeast. J Neurochem 77:1327–1337CrossRefGoogle Scholar
  3. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218CrossRefADSGoogle Scholar
  4. Gomila G, Casuso I, Errachid A, Ruiz O, Pajot E, Minic J, Gorojankina T, Persuy MA, Aioun J, Salesse R, Bausells J, Villaneuva G, Rius G, Hou Y, Jaffrezic N, Pennetta C, Alfinito E, Akimov V, Reggiani L, Ferrare G, Fumagalli L, Sampietro M, Samitier J (2006) Advances in the production, immobilization, and electrical characterization of olfactory receptors for olfactory nanobiosensor development. Sens Actuators B Chem 116:66–71CrossRefGoogle Scholar
  5. Hou Y, Jaffrezic-Renault N, Martelet C, Tlili C, Zhang A, Pernollet JC, Briand L, Gomila G, Errachid A, Samitier J, Salvagnac L, Torbiero B, Temple-Boyer P (2005) Study of Langmuir and Langmuir–Blodgett films of odorant-binding protein/amphiphile for odorant biosensors. Langmuir 21:4058–4065CrossRefGoogle Scholar
  6. Hou Y, Jaffrezic-Renault N, Martelet C, Zhang A, Minic-Vidic J, Gorojankina T, Persuy MA, Pajot-Augy E, Salesse R, Akimov V, Reggiani L, Pennetta C, Alfinito E, Ruiz O, Gomila G, Samitier J, Errachid A (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory receptor I7. Biosens Bioelectron 22:1550–1555CrossRefGoogle Scholar
  7. Ko HJ, Park TH (2005) Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron 20:1327–1332CrossRefGoogle Scholar
  8. Levasseur G, Persuy MA, Grebert D, Remy JJ, Salesse R, Pajot-Augy E (2003) Ligand-specific dose-response of heterologously expressed olfactory receptors. Eur J Biochem 270:2905–2912CrossRefGoogle Scholar
  9. Marrakchi M, Dzyadevych SV, Biloivan OA, Martelet C, Temple P, Jaffrezic-Renault N (2006) Development of trypsin biosensor based on ion sensitive field-effect transistors for proteins determination. Mater Sci Eng C26:369–373Google Scholar
  10. Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, Pajot-Augy E (2005a) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J 272:524–537CrossRefGoogle Scholar
  11. Minic J, Sautel M, Salesse R, Pajot-Augy E (2005b) Yeast system as a screening tool for pharmacological assessment of G protein coupled receptors. Curr Med Chem 12:961–969CrossRefGoogle Scholar
  12. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRefGoogle Scholar
  13. Pajot-Augy E, Crowe M, Levasseur G, Salesse R, Connerton I (2003) Engineered yeasts as reporter systems for odorant detection. J Recept Signal Transduct Res 23:155–171CrossRefGoogle Scholar
  14. Price LA, Kajkowski EM, Hadcock JR, Ozenberger BA, Pausch MH (1995) Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol 15:6188–6195Google Scholar
  15. Sung JH, Ko HJ, Park TH (2006) Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron 21:1981–1986CrossRefGoogle Scholar
  16. Vidic JM, Grosclaude J, Persuy MA, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6:1026–1032CrossRefGoogle Scholar
  17. Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J Neurosci 19:7426–7433Google Scholar
  18. Wu TZ (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron 14:9–18CrossRefGoogle Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  • Mouna Marrakchi
    • 1
  • Jasmina Vidic
    • 2
  • Nicole Jaffrezic-Renault
    • 3
  • Claude Martelet
    • 1
  • Edith Pajot-Augy
    • 2
  1. 1.CEGELY, UMR-CNRS 5005Ecole Centrale de LyonEcully CedexFrance
  2. 2.Unité Neurobiologie de l’Olfaction et de la Prise Alimentaire, Equipe Récepteurs et Communication ChimiqueINRA-Université Paris-SudJouy en JosasFrance
  3. 3.Laboratoire de Sciences Analytiques, UMR CNRS 5180CNRS-Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations