Advertisement

European Biophysics Journal

, Volume 37, Issue 2, pp 121–129 | Cite as

Structure and elastic properties of tunneling nanotubes

  • Bruno Pontes
  • Nathan B. Viana
  • Loraine Campanati
  • Marcos Farina
  • Vivaldo Moura Neto
  • H. Moysés NussenzveigEmail author
Original Paper

Abstract

We investigate properties of a reported new mechanism for cell–cell interactions, tunneling nanotubes (TNT’s). TNT’s mediate actin-based transfer of vesicles and organelles and they allow signal transmission between cells. The effects of lateral pulling with polystyrene beads trapped by optical tweezers on TNT’s linking separate U-87 MG human glioblastoma cells in culture are described. This cell line was chosen for handling ease and possible pathology implications of TNT persistence in communication between cancerous cells. Observed nanotubes are shown to have the characteristic features of TNT’s. We find that pulling induces two different types of TNT bifurcations. In one of them, termed V-Y bifurcation, the TNT is first distorted into a V-shaped form, following which a new branch emerges from the apex. In the other one, termed I-D bifurcation, the pulled TNT is bent into a curved arc of increasingly broader span. Curves showing the variation of pulling force with displacement are obtained. Results yield information on TNT structure and elastic properties.

Keywords

Tunneling nanotubes Structure Elastic properties Optical tweezers Tethers Bifurcations 

Notes

Acknowledgments

This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto do Milênio de Nanociências, Instituto do Milênio de Avanço Global e Integrado da Matemática Brasileira, Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) and Fundação Universitária José Bonifácio (FUJB). We thank Jair Koiller and Gerusa Alexsandra de Araújo for helpful discussions.

Supplementary material

Movie M1. Vesicle transfer along TNT to U-87 MG cell under stress (no CO2). Real time interval 12.5 min. (MPG 1.06 Mb)

Movie M2. TNT formation through separation of two initially linked U-87 MG cells. Real time interval 1.7 min. (MPG 844 kb)

Movie M3. Left: V-Y bifurcation. Real time interval 6.7 min. Right: Simultaneous force ´ displacement graph. Curve drawn to guide the eye. (MPG 828 kb)

Movie M4. Left: I-D bifurcation. Real time interval 12 sec. Right: Simultaneous force ´ displacement graph. Curve drawn to guide the eye. Images treated with ImageJ Shadow north filter. (MPG 806 kb)

References

  1. Baluska F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell theory revised. Ann Bot 94:9–32CrossRefGoogle Scholar
  2. Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 66:509–517Google Scholar
  3. Bukman DJ, Yao JH, Wortis M (1996) Stability of cylindrical vesicles under axial tension. Phys Rev E 54:5463–5468CrossRefADSGoogle Scholar
  4. Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membrane studied by tether formation with laser optical tweezers. Biophys J 68:988–996Google Scholar
  5. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370Google Scholar
  6. Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18:6681–6692Google Scholar
  7. Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88:238101 1–238101 4CrossRefADSGoogle Scholar
  8. Gustafson T, Wolpert L (1961) Studies on the cellular basis of morphogenesis in the sea urchin embryo: directed movements of primary mesenchime cells in normal and vegetalized larvae. Exp Cell Res 24:64–79CrossRefGoogle Scholar
  9. Hochmuth RM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:356–369Google Scholar
  10. Hodneland E, Lundervold A, Gurke S, Tai X-C, Rustom A, Gerdes H-H (2006) Automated detection of tunneling nanotubes in 3d images. Cytometry A 69:961–972Google Scholar
  11. Hsiung F, Ramírez-Weber F-A, Iwaki DD, Kornberg TB (2005) Dependence of drosophila wing imaginal disc cytonemes on decapentaplegic. Nature 437:560–563CrossRefADSGoogle Scholar
  12. Karlsson A, Karlsson R, Karlsson M, Cans A-S, Strömberg A, Ryttsén F, Orwar O (2001) Networks of nanotubes and containers. Nature 409:150–152CrossRefADSGoogle Scholar
  13. Karlsson M, Sott K, Davidson M, Cans A-S, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc Natl Acad Sci USA 99:11573–11578CrossRefADSGoogle Scholar
  14. Kater SB, Rehder V (1995) The sensory-motor role of growth cone filopodia. Curr Opin Neurobiol 5:68–74CrossRefGoogle Scholar
  15. Koster G, Cacciuto A, Derényi I, Frenkel D, Dogterom M (2005) Force barriers for membrane tube formation. Phys Rev Lett 94:068101–068104CrossRefADSGoogle Scholar
  16. Lemmon EW, McLinden MO, Friend DG (2005) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (Eds) NIST chemistry WebBook. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  17. Li Z, Anvari B, Takashima M, Brecht P, Torres JH, Brownell WE (2002) Membrane tether formation from outer hair cells with optical tweezers. Biophys J 82:1386–1395Google Scholar
  18. Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovi DJ (2005) Reaching out for signals: filopodia sense egf and respond by directed retrograde transport of activated receptors. J Cell Biol 170:619–626CrossRefGoogle Scholar
  19. Mogilner R, Rubinstein B (2005) The physics of filopodial protrusion. Biophys J 89:782–795CrossRefGoogle Scholar
  20. Önfelt B, Nedvetzki S, Yanigi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513Google Scholar
  21. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefADSGoogle Scholar
  22. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576CrossRefGoogle Scholar
  23. Powers TR, Huber G, Goldstein RE (2002) Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Phys Rev E 65:041901 1–041901 11ADSGoogle Scholar
  24. Ramírez-Weber F-A, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in drosophila imaginal discs. Cell 97:599–607CrossRefGoogle Scholar
  25. Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002Google Scholar
  26. Rustom A, Saffrich R, Marcovik I, Walther P, Gerdes H-H (2004) Nanotubular highways for intercellular organelle transport. Science 303: 1007–1010CrossRefADSGoogle Scholar
  27. Rorth P (2003) Communication by touch: role of cellular extensions in complex animals. Cell 112:595–598CrossRefGoogle Scholar
  28. Sant’Anna C, Campanati L, Gadelha C, Lourenço D, Labati-Terra L, Bittencourt-Silvestre J, Benchimol M, Cunha-e-Silva NL, De Souza W (2005) Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (fesem). Histochem Cell Biol 124:87–95CrossRefGoogle Scholar
  29. Schliwa M, van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90:222–235CrossRefGoogle Scholar
  30. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396CrossRefGoogle Scholar
  31. Smith A-S, Sackmann E, Seifert U (2004) Pulling tethers from adhered vesicles. Phys Rev Lett 92:28101–28104CrossRefADSGoogle Scholar
  32. Sun M, Graham JS, Hegedüs B, Marga F, Zhang Y, Forgacs G, Grandbois M (2005) Multiple membrane tethers probed by atomic force spectroscopy. Biophys J 89:4320–4329CrossRefGoogle Scholar
  33. Svitkina TM, Bulanova EA, Chaga OL, Vignjevic DM, Kojima S-i, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421CrossRefGoogle Scholar
  34. Titushkin I, Cho M (2006) Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys J 90:2582–2591CrossRefGoogle Scholar
  35. Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of golgi and endoplasmic reticulum membranes. Biophys J 86:2923–2928CrossRefGoogle Scholar
  36. Viana NB, Rocha MS, Mesquita ON, Mazolli A, Maia Neto PA (2006a) Characterization of objective transmittance for optical tweezers. Appl Opt 45:4263–4269CrossRefADSGoogle Scholar
  37. Viana NB, Rocha MS, Mesquita ON, Mazolli A, Maia Neto PA, Nussenzveig HM (2006b) Absolute calibration of optical tweezers. Appl Phys Lett 88:131110–131113CrossRefADSGoogle Scholar
  38. Vignjevic D, Kojima S-, Aratyn Y, Danciu O, Svitkina T, Borisy GG (2006) Role of fascin in filopodial protrusion. J Cell Biol 174:863–875CrossRefGoogle Scholar
  39. Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubes. Immunity 23:309–318CrossRefGoogle Scholar
  40. Wood W, Martin P (2002) Structures in focus—filopodia. Int J Biochem Cell Biol 34:726–730CrossRefGoogle Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  • Bruno Pontes
    • 1
  • Nathan B. Viana
    • 1
    • 2
  • Loraine Campanati
    • 1
  • Marcos Farina
    • 1
  • Vivaldo Moura Neto
    • 1
  • H. Moysés Nussenzveig
    • 1
    • 2
    Email author
  1. 1.LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Física, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations