European Biophysics Journal

, Volume 36, Supplement 1, pp 37–48 | Cite as

Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins

  • Marc BaldusEmail author
The EBSA prize lecture


Solid-state nuclear magnetic resonance (ssNMR) represents a spectroscopic method to study non-crystalline molecules at atomic resolution. Advancements in spectroscopy and biochemistry provide increasing possibilities to study structure and dynamics of complex biomolecular systems by ssNMR. Here, methodological aspects and applications in the context of protein folding and aggregation are discussed. In addition, studies involving membrane proteins are considered.


Amyloid Fibril Magic Angle Spin Chemical Shift Anisotropy Anisotropic Interaction Magic Angle Spin Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work described in this review was supported through grants from the DFG, the FCI, the Volkswagen foundation and the Humboldt foundation, the EU and the Max-Planck Gesellschaft. I thank members of my group and our collaborators over the past 7 years who substantially contributed to work described here. Continuous support by C. Griesinger is gratefully acknowledged.


  1. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659ADSCrossRefGoogle Scholar
  2. Andronesi OC, Pfeifer JR, Al-Momani L, Özdirekcan S, Rijkers DTS, Angerstein B, Luca S, Koert U, Killian JA, Baldus M (2004) Probing membrane protein structure and orientation under fast magic-angle-spinning. J Biomol NMR 30:253–265CrossRefGoogle Scholar
  3. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974CrossRefGoogle Scholar
  4. Balbach J, Forge V, Lau WS, van Nuland NAJ, Brew K, Dobson CM (1996) Protein folding monitored at individual residues during a two-dimensional NMR experiment. Science 274:1161–1163ADSCrossRefGoogle Scholar
  5. Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47CrossRefGoogle Scholar
  6. Baldus M (2006) Molecular interactions investigated by multi-dimensional solid-state NMR. Curr Opin Struct Biol 16:618–623CrossRefGoogle Scholar
  7. Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Mag Res A 121:65–69CrossRefGoogle Scholar
  8. Barroso S, Richard F, Nicolas-Etheve D, Reversat JL, Bernassau JM, Kitabgi P, Labbe-Jullie C (2000) Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J Biol Chem 275:328–336CrossRefGoogle Scholar
  9. Bertoncini CW, Jung Y-S, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) From the cover: release of long-range tertiary interactions potentiates aggregation of natively unstructured a-synuclein. Proc Natl Acad Sci USA 102:1430–1435ADSCrossRefGoogle Scholar
  10. Blanco FJ, Tycko R (2001) Determination of polypeptide backbone dihedral angles in solid state NMR by double quantum C−13 chemical shift anisotropy measurements. J Mag Res 149:131–138ADSCrossRefGoogle Scholar
  11. Böckmann A, Lange A, Galinier A, Luca S, Giraud N, Heise H, Juy M, Montserret R, Penin F, Baldus M (2003) Solid-state NMR sequential resonance assignments and conformational analysis of the 2*10.4 kDa dimeric form of the bacillus subtilis protein crh. J Biomol NMR 27:323–339CrossRefGoogle Scholar
  12. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102ADSCrossRefGoogle Scholar
  13. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298CrossRefGoogle Scholar
  14. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ (1996) Protein NMR spectroscopy, principles and practice. Academic, San DiegoGoogle Scholar
  15. Chan JCC, Oyler NA, Yau WM, Tycko R (2005) Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680CrossRefGoogle Scholar
  16. Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s Ab (1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127:13472–13473CrossRefGoogle Scholar
  17. Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from a-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563CrossRefGoogle Scholar
  18. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318CrossRefGoogle Scholar
  19. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  20. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180CrossRefGoogle Scholar
  21. Costa PR, Gross JD, Hong M, Griffin RG (1997) Solid-state NMR measurement of Psi in peptides: a NCCN 2Q- heteronuclear local field experiment. Chem Phys Lett 280:95–103ADSCrossRefGoogle Scholar
  22. Coutant J, Curmi PA, Toma F, Monti JP (2007) NMR solution structure of neurotensin in membrane-mimetic environments: molecular basis for neurotensin receptor recognition. Biochemistry (in press)Google Scholar
  23. Creemers AFL, Kiihne S, Bovee-Geurts PHM, DeGrip WJ, Lugtenburg J, de Groot HJM (2002) H−1 and C−13 MAS NMR evidence for pronounced ligand–protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci USA 99:9101–9106ADSCrossRefGoogle Scholar
  24. Creuzet F, McDermott A, Gebhard R, Vanderhoef K, Spijkerassink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG (1991) Determination of membrane–protein structure by rotational resonance NMR—bacteriorhodopsin. Science 251:783–786ADSCrossRefGoogle Scholar
  25. Cross TA, Opella SJ (1994) Solid-state NMR structural studies of peptides and proteins in membranes. Curr Opin Struct Biol 4:574–581CrossRefGoogle Scholar
  26. Cross TA, Frey MH, Opella SJ (1983) 15N spin exchange in a protein. J Am Chem Soc 105:7471–7473CrossRefGoogle Scholar
  27. Dobson CM (2002) Protein-misfolding diseases: getting out of shape. Nature 418:729–730ADSCrossRefGoogle Scholar
  28. Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77ADSCrossRefGoogle Scholar
  29. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622CrossRefGoogle Scholar
  30. Edman K, Royant A, Nollert P, Maxwell CA, Pebay-Peyroula E, Navarro J, Neutze R, Landau EM (2002) Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure 10:473–482CrossRefGoogle Scholar
  31. Egorova-Zachernyuk TA, Hollander J, Fraser N, Gast P, Hoff AJ, Cogdell R, de Groot HJM, Baldus M (2001) Heteronuclear 2D-correlations in a uniformly [C−13, N−15] labeled membrane–protein complex at ultra-high magnetic fields. J Biomol NMR 19:243–253CrossRefGoogle Scholar
  32. Eilers M, Ying WW, Reeves PJ, Khorana HG, Smith SO (2002) Magic angle spinning nuclear magnetic resonance of isotopically labeled rhodopsin. Methods Enzymol 343:212–222CrossRefGoogle Scholar
  33. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, OxfordGoogle Scholar
  34. Etzkorn M, Bockmann A, Penin F, Riedel D, Baldus M (2007a) Characterization of folding intermediates of a domain-swapped protein by solid-state NMR spectroscopy. J Am Chem Soc 129:169–175CrossRefGoogle Scholar
  35. Etzkorn M, Martell S, Andronesi Ovidiu C, Seidel K, Engelhard M, Baldus M (2007b) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angewandte Chem Int 46:459–462CrossRefGoogle Scholar
  36. Feng X, Verdegem PJE, Lee YK, Sandstrom D, Eden M, BoveeGeurts P, deGrip WJ, Lugtenburg J, deGroot HJM, Levitt MH (1997) Direct determination of a molecular torsional angle in the membrane protein rhodopsin by solid-state NMR. J Am Chem Soc 119:6853–6857CrossRefGoogle Scholar
  37. Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253CrossRefADSGoogle Scholar
  38. van Gammeren AJ, Hulsbergen FB, Hollander JG, de Groot HJM (2004) Biosynthetic site-specific C-13 labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins. J Biomol NMR 30:267–274CrossRefGoogle Scholar
  39. Glaubitz C, Watts A (1998) Magic angle-oriented sample spinning (MAOSS): a new approach toward biomembrane studies. J Mag Res 130:305–316ADSCrossRefGoogle Scholar
  40. Goedert M (1989) Radioligand-binding assays for study of neurotensin receptors. Methods Enzymol 168:462–481CrossRefGoogle Scholar
  41. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487ADSCrossRefGoogle Scholar
  42. Griffin RG (1981) Solid state nuclear magnetic resonance of lipid bilayers. Methods Enzymol 72:108–174CrossRefGoogle Scholar
  43. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512CrossRefGoogle Scholar
  44. Grisshammer R, Tucker J (2000) Expression in Escherichia coli and large-scale purification of a rat neurotensin receptor. In: Haga T, Bernstein G (eds) G protein coupled receptors. CRC, Boca Raton, pp 265–280Google Scholar
  45. de Groot HJM (2000) Solid-state NMR spectroscopy applied to membrane proteins. Curr Opin Struct Biol 10:593–600CrossRefGoogle Scholar
  46. Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289ADSCrossRefGoogle Scholar
  47. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005a) Molecular-level secondary structure, polymorphism, and dynamics of full-length {alpha}-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876ADSCrossRefGoogle Scholar
  48. Heise H, Luca S, de Groot BL, Grubmuller H, Baldus M (2005b) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120CrossRefGoogle Scholar
  49. Heise H, Seidel K, Etzkorn M, Becker S, Baldus M (2005c) 3D Spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. J Mag Res 173:64–74ADSCrossRefGoogle Scholar
  50. Heise H, Hoyer W, Becker S, Seidel K, Baldus M (2007) Fibril topology of full-length a-synuclein probed by solid-state NMR spectroscopy (submitted)Google Scholar
  51. Herzfeld J, Lansing JC (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct 31:73–95CrossRefGoogle Scholar
  52. Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kuhlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem 6:1679–1684CrossRefGoogle Scholar
  53. Hong M (2006) Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14:1731–1740CrossRefGoogle Scholar
  54. Hong M, Gross JD, Griffin RG (1997) Site-resolved determination of peptide torsion angle phi from the relative orientations of backbone N–H and C–H bonds by solid-state NMR. J Phys Chem B 101:5869–5874CrossRefGoogle Scholar
  55. Hughes CE, Baldus M (2005) Magic-angle-spinning solid-state NMR applied to polypeptides and proteins. Ann Rep NMR Spect 55:121–158CrossRefGoogle Scholar
  56. Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C, Ogi K, Onda H, Fujino M, Shirakawa M (2001) Conformation of a peptide ligand bound to its G-protein coupled receptor. Nature Struct Bio 8:161–165CrossRefGoogle Scholar
  57. Ishii Y, Terao T, Kainosho M (1996) Relayed anisotropy correlation NMR: determination of dihedral angles in solids. Chem Phys Lett 256:133–140ADSCrossRefGoogle Scholar
  58. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of b2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA103:18119–18124CrossRefADSGoogle Scholar
  59. Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: Accurate C–13–N-15 distance measurements in uniformly C−13,N−15-labeled peptides. J Am Chem Soc 123:3507–3519CrossRefGoogle Scholar
  60. Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716ADSCrossRefGoogle Scholar
  61. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57ADSCrossRefGoogle Scholar
  62. Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff H-J, Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224CrossRefGoogle Scholar
  63. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55CrossRefGoogle Scholar
  64. Krabben L, van Rossum BJ, Castellani F, Bocharov E, Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinata H (2004) Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid-state NMR approach. FEBS Lett 564:319–324CrossRefGoogle Scholar
  65. Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043–5051CrossRefGoogle Scholar
  66. Ladizhansky V, Jaroniec CP, Diehl A, Oschkinat H, Griffin RG (2003) Measurement of multiple psi torsion angles in uniformly C−13,N−15-labeled alpha-spectrin SH3 domain using 3D N-15-C-13-C-13-N-15 MAS dipolar-chemical shift correlation spectroscopy. J Am Chem Soc 125:6827–6833CrossRefGoogle Scholar
  67. Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705CrossRefGoogle Scholar
  68. Lange A, Seidel K, Verdier L, Luca S, Baldus M (2003) Analysis of proton–proton transfer dynamics in rotating solids and their use for 3D structure determination. J Am Chem Soc 125:12640–12648CrossRefGoogle Scholar
  69. Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092CrossRefGoogle Scholar
  70. Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962ADSCrossRefGoogle Scholar
  71. Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Grenerating a high affinity scorpion toxin receptor in KcsA- Kv1.3 chimeric potassium channels. J Biol Chem 275:16918–16924CrossRefGoogle Scholar
  72. Legros C, Schulze C, Garcia ML, Bougis PE, Martin-Eauclaire MF, Pongs O (2002) Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA. Biochemistry 41:15369–15375CrossRefGoogle Scholar
  73. Lenaeus MJ, Vamvouka M, Focia PJ, Gross A (2005) Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12:454–459CrossRefGoogle Scholar
  74. Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711ADSCrossRefGoogle Scholar
  75. Luca S, Lange A, Heise H, Baldus M (2005) Investigation of ligand–receptor interactions by high-resolution solid-state NMR. Arch Pharm (Weinheim) 338:217–228CrossRefGoogle Scholar
  76. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 Angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503ADSCrossRefGoogle Scholar
  77. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320ADSCrossRefGoogle Scholar
  78. Marassi FM, Opella SJ (1998) NMR structural studies of membrane proteins. Curr Opin Struct Biol 8:640–648CrossRefGoogle Scholar
  79. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561CrossRefGoogle Scholar
  80. McDowell LM, Schaefer J (1996) High-resolution NMR of biological solids. Curr Opin Struct Biol 6:624–629CrossRefGoogle Scholar
  81. Morris GA, Freeman R (1979) Enhancement of nuclear magnetic-resonance signals by polarization transfer. J Am Chem Soc 101:760–762CrossRefGoogle Scholar
  82. Moukhametzianov R, Klare JP, Efremov R, Baeken C, Gäppner A, Labahn Jr, Engelhard M, Büldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119ADSCrossRefGoogle Scholar
  83. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-b spine of amyloid-like fibrils. Nature 435:773–778ADSCrossRefGoogle Scholar
  84. Nomura K, Takegoshi K, Terao T, Uchida K, Kainosho M (1999) Determination of the complete structure of a uniformly labeled molecule by rotational resonance solid-state NMR in the tilted rotating frame. J Am Chem Soc 121:4064–4065CrossRefGoogle Scholar
  85. Opella SJ (1986) Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol 131:327–361CrossRefGoogle Scholar
  86. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606CrossRefGoogle Scholar
  87. Palmer AG, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310CrossRefGoogle Scholar
  88. Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO (2004) Coupling of retinal isomerization to the activation of rhodopsin. Proc Natl Acad Sci USA 101:10048–10053ADSCrossRefGoogle Scholar
  89. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s b-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747ADSCrossRefGoogle Scholar
  90. Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel b-sheet registry in fibrils formed by a b-amyloid peptide. J Mol Biol 335:247–260CrossRefGoogle Scholar
  91. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s b-amyloid fibrils. Science 307:262–265ADSCrossRefGoogle Scholar
  92. Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s b-amyloid fibrils. Biochemistry 45:498–512CrossRefGoogle Scholar
  93. Reif B, Hohwy M, Jaroniec CP, Rienstra CM, Griffin RG (2000) NH–NH vector correlation in peptides by solid-state NMR. J Mag Res 145:132–141ADSCrossRefGoogle Scholar
  94. Rienstra CM, Hohwy M, Mueller LJ, Jaroniec CP, Reif B, Griffin RG (2002) Determination of multiple torsion-angle constraints in U-C- 13,N-15-labeled peptides: 3D H-1-N-15-C-13-H-1 dipolar chemical shift NMR spectroscopy in rotating solids. J Am Chem Soc 124:11908–11922CrossRefGoogle Scholar
  95. Ritter C, Maddelein M-L, Siemer AB, Lührs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848ADSCrossRefGoogle Scholar
  96. Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J (2001) X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci USA 98:10131–10136ADSCrossRefGoogle Scholar
  97. Schneider R, Etzkorn M, Baldus M (2007) Molecular motion detected by double-quantum (13C,13C) solid-state NMR spectroscopy (submitted)Google Scholar
  98. Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium-ion channel with 2 predicted transmembrane segments from Streptomyces lividans. EMBO J 14:5170–5178Google Scholar
  99. Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from (13C,13C) correlation spectroscopy. PhysChemChemPhys 6:5090–5093Google Scholar
  100. Seidel K, Etzkorn M, Sonnenberg L, Griesinger C, Sebald A, Baldus M (2005) Studying 3D structure and dynamics by high-resolution solid-state NMR: application to l-tyrosine–ethylester. J Phys Chem A 109:2436–2442CrossRefGoogle Scholar
  101. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross-b conformation. Proc Natl Acad Sci USA 97:4897–4902ADSCrossRefGoogle Scholar
  102. Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel b-sheet structure. Proc Natl Acad Sci USA 103:19754–19759CrossRefADSGoogle Scholar
  103. Siemer AB, Arnold AA, Ritter C, Westfeld T, Ernst M, Riek R, Meier BH (2006) Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J Am Chem Soc 128:13224–13228CrossRefGoogle Scholar
  104. Sizun C, Bechinger B (2002) Bilayer sample for fast or slow magic angle oriented sample spinning solid-state NMR spectroscopy. J Am Chem Soc 124:1146–1147CrossRefGoogle Scholar
  105. Sonnenberg L, Luca S, Baldus M (2004) Multiple-spin analysis of (13C,13C) chemical-shift selective transfer in uniformly labeled biomolecules. J Mag Res 166:100–110ADSCrossRefGoogle Scholar
  106. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739CrossRefGoogle Scholar
  107. Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854CrossRefGoogle Scholar
  108. Torchia DA (1984) Solid-state NMR-studies of protein internal dynamics. Annu Rev Biophys Bioeng 13:125–144CrossRefGoogle Scholar
  109. Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103CrossRefGoogle Scholar
  110. Tycko R (2006) Molecular Structure of amyloid fibrils: insights from solid-state NMR. Quart Rev Biophys 39:1–55CrossRefGoogle Scholar
  111. vanderWel PCA, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846CrossRefGoogle Scholar
  112. Vuister GW, Kim SJ, Wu C, Bax A (1994) 2d and 3d NMR-study of phenylalanine residues in proteins by reverse isotopic labeling. J Am Chem Soc 116:9206–9210CrossRefGoogle Scholar
  113. Watts A (1999) NMR of drugs and ligands bound to membrane receptors. Curr Opin Biotechnol 10:48–53CrossRefGoogle Scholar
  114. Watts A (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nature Rev Drug Disc 4:555–568CrossRefGoogle Scholar
  115. Weinreb PH, Zhen WG, Poon AW, Conway KA, Lansbury PT (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715CrossRefGoogle Scholar
  116. Williamson PTF, Bains S, Chung C, Cooke R, Watts A (2002) Probing the environment of neurotensin whilst bound to the neurotensin receptor by solid-state NMR. FEBS Lett 518:111–115CrossRefGoogle Scholar
  117. Wishart DS, Sykes BD (1994) Chemical-shifts as a tool for structure determination. Nucl Magn Reson Pt C 239:363–392CrossRefGoogle Scholar
  118. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley Interscience, New YorkGoogle Scholar
  119. Yi H, Cao ZJ, Yin SJ, Dai C, Wu YL, Li WX (2007) Interaction simulation of hERG K+ channel with its specific BeKm−1 peptide: insights into the selectivity of molecular recognition. J Prot Res 6:611–620CrossRefGoogle Scholar
  120. Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001a) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661ADSCrossRefGoogle Scholar
  121. Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001b) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Angstrom resolution. Nature 414:43–48ADSCrossRefGoogle Scholar
  122. Zhou Y, MacKinnon R (2003) The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333:965–975CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Solid-state NMRMax-Planck-Institut für Biophysikalische ChemieGöttingenGermany

Personalised recommendations