European Biophysics Journal

, Volume 36, Issue 7, pp 727–732

Atomic force microscopy images suggest aggregation mechanism in cerato-platanin

  • F. Sbrana
  • L. Bongini
  • G. Cappugi
  • D. Fanelli
  • A. Guarino
  • L. Pazzagli
  • A. Scala
  • M. Vassalli
  • C. Zoppi
  • B. Tiribilli
Original Paper

Abstract

Cerato-platanin (CP), the first member of the “cerato-platanin family”, is a moderately hydrophobic protein produced by Ceratocystis fimbriata, the causal agent of a severe plant disease called “canker stain”. The protein is localized in the cell wall of the fungus and it seems to be involved in the host-plane interaction and induces both cell necrosis and phytoalexin synthesis (one of the first plant defence-related events). Recently, it has been determined that CP, like other fungal surface protein, is able to self assemble in vitro. In this paper we characterize the aggregates of CP by Atomic Force Microscopy (AFM) images. We observe that CP tends to form early annular-shaped oligomers that seem to constitute the fundamental bricks of a hierarchical aggregation process, eventually resulting in large macrofibrillar assemblies. A simple model, based on the hypothesis that the aggregation is energetically favourable when the exposed surface is reduced, is compatible with the measured aggregates’ shape and size. The proposed model can help to understand the mechanism by which CP and many other fungal surface proteins exert their effects.

Keywords

Protein aggregation Cerato-platanin AFM 

References

  1. Askolin S, Linder M, Scholtmeijer K, Tenkanen M, Penttilä M, de Vocht ML, Wösten HAB (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromolecules 7:1295–1301CrossRefGoogle Scholar
  2. Boddi S, Comparini C, Calamassi R, Pazzagli L, Cappugi G, Scala A (2004) Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. Platani. FEMS Microbiol Lett 233:341–346CrossRefGoogle Scholar
  3. Carresi L, Pantera B, Zoppi C, Cappugi G, Oliveira AL, Pertinhez TA, Spisni A, Scala A Pazzagli L (2006) Cerato-platanin, a phytotoxic protein from Ceratocystis fimbriata: expression in Pichia pastoris, purification and characterization. Protein Expr Purif 49:159–167CrossRefGoogle Scholar
  4. Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HAO, Dobson CM, Davis J (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79:3282–3293CrossRefGoogle Scholar
  5. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils 1999. Proc Natl Acad Sci USA 96:3590–3594CrossRefADSGoogle Scholar
  6. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–336CrossRefGoogle Scholar
  7. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853CrossRefGoogle Scholar
  8. Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539CrossRefGoogle Scholar
  9. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci USA 103:3621–3626CrossRefADSGoogle Scholar
  10. LeVine H (1993) Thioflavine T interaction with synthetic Alzheimer’s disease b-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410CrossRefGoogle Scholar
  11. Linder MB, Szilvay GR, Nakari-SetäläT, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896CrossRefGoogle Scholar
  12. Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid- like structures. Structure (Camb) 9:83–91CrossRefGoogle Scholar
  13. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, Thioflavine T1 Anal Biochem 177:244–249CrossRefGoogle Scholar
  14. Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A (1999) Purification, characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. Platani. J Biol Chem 274:24959–24964CrossRefGoogle Scholar
  15. Pazzagli L, Pantera B, Carresi L, Pertinhez TA, Spisni A, Tegli S, Zoppi C, Scala A, Cappugi G (2006) Cerato-platanin, the first member of a new fungal protein family: cloning, expression and characterization. Cell Biochem Biophys 44:512–521CrossRefGoogle Scholar
  16. Scala A, Pazzagli L, Comparini C, Santini A, Tegli S, Cappugi G (2004) Cerato-platanin an early-produced protein by Ceratocystis fimbriata f.sp. platani elicits phytoalexin synthesis in host and non-host plants. J Plant Pathol 86:23–29Google Scholar
  17. Soldi G, Bemporad F, Torrassa S, Relini A, Ramazzotti M, Taddei N, Chiti F (2005) Amyloid formation of a protein in the absence of initial unfolding and destabilization of the native state. Biophys J 89:4234–4244CrossRefGoogle Scholar
  18. Stroud PA, Goodwin JS, Butko P, Cannon GC, McCormick CL (2003) Experimental evidence for multiple assembled states of Sc3 from Schizophyllum commune. Biomacromolecules 4:956–967CrossRefGoogle Scholar
  19. Williams R (1979) Circle packings, plane tessellations, and networks. In: The Geometrical foundation of natural structure: a source book of design. Dover, New York, pp 34–47Google Scholar
  20. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–46CrossRefGoogle Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  • F. Sbrana
    • 1
  • L. Bongini
    • 2
  • G. Cappugi
    • 3
  • D. Fanelli
    • 1
    • 4
    • 8
  • A. Guarino
    • 5
  • L. Pazzagli
    • 3
  • A. Scala
    • 6
  • M. Vassalli
    • 1
    • 7
    • 8
  • C. Zoppi
    • 3
  • B. Tiribilli
    • 1
    • 7
  1. 1.C.S.D.C, Dip. FisicaUniversità di FirenzeSesto FiorentinoItaly
  2. 2.Dip. FisicaUniversità di FirenzeSesto FiorentinoItaly
  3. 3.Dip. di Scienze BiochimicheUniversità di FirenzeSesto FiorentinoItaly
  4. 4.Theoretical Physics, School of Physics and AstronomyUniversity of Manchester, ManchesterManchesterUK
  5. 5.Université de la Polynesie FrancaiseTahitiFrench Polynesia
  6. 6.Dip. di Biotecnologie AgrarieSezione di Patologia Vegetale, Università di FirenzeSesto FiorentinoItaly
  7. 7.ISC, CNRIstituto Sistemi ComplessiSesto FiorentinoItaly
  8. 8.I.N.F.NSezione di FirenzeSesto FiorentinoItaly

Personalised recommendations