European Biophysics Journal

, Volume 36, Issue 7, pp 805–813

Thermal stability effects of removing the type-2 copper ligand His306 at the interface of nitrite reductase subunits

  • Andrea Stirpe
  • Luigi Sportelli
  • Hein Wijma
  • Martin Ph. Verbeet
  • Rita Guzzi
Original Paper
  • 53 Downloads

Abstract

Nitrite reductase (NiR) is a highly stable trimeric protein, which denatures via an intermediate, \({\text{N}}_{3} \overset k \longleftrightarrow {\text{U}}_{3} \xrightarrow{k}{\text{F}} \) (N—native, U—unfolded and F—final). To understand the role of interfacial residues on protein stability, a type-2 copper site ligand, His306, has been mutated to an alanine. The characterization of the native state of the mutated protein highlights that this mutation prevents copper ions from binding to the type-2 site and eliminates catalytic activity. No significant alteration of the geometry of the type-1 site is observed. Study of the thermal denaturation of this His306Ala NiR variant by differential scanning calorimetry shows an endothermic irreversible profile, with maximum heat absorption at Tmax ≈ 85°C, i.e., 15°C lower than the corresponding value found for wild-type protein. The reduction of the protein thermal stability induced by the His306Ala replacement was also shown by optical spectroscopy. The denaturation pathway of the variant is compatible with the kinetic model \({\text{N}}_{3} \xrightarrow{k}{\text{F}}_{3} , \) where the protein irreversibly passes from the native to the final state. No evidence of subunits’ dissociation has been found within the unfolding process. The results show that the type-2 copper sites, situated at the interface of two monomers, significantly contribute to both the stability and the denaturation mechanism of NiR.

Keywords

Nitrite reductase mutant Thermal stability Type-2 copper Two-state irreversible model 

References

  1. Adman ET, Godden JW, Turley S (1995) The structure of copper nitrite-reductase from Achromobacter cycloclastes at five pH values, with NO 2 bound and with type II copper depleted. J Biol Chem 46:27458–27474Google Scholar
  2. Agashe VR, Udgaonkar JB (1995) Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry 34:3286–3299CrossRefGoogle Scholar
  3. Alber T, Matthews BW (1987) Structure and thermal stability of phage T4 lysozyme. Methods Enzymol 154:511–533CrossRefGoogle Scholar
  4. Alcaraz LA, Donaire A (2005) Rapid binding of copper(I) to folded aporusticyanin. FEBS Lett 579:5223–5226CrossRefGoogle Scholar
  5. Ali MH, Imperiali B (2005) Protein oligomerization: how and why. Bioorg Med Chem 13:5013–5020CrossRefGoogle Scholar
  6. Banerjee T, Kishore N (2004) A differential scanning calorimetric study on the irreversible thermal unfolding of concanavalin A. Thermochim Acta 411:195–201CrossRefGoogle Scholar
  7. Boulanger MJ, Kukimoto M, Nishiyama M, Horinouchi S, Murphy MEP (2000) Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem 275:23957–23964CrossRefGoogle Scholar
  8. Brenner AJ, Harris ED (1995) A quantitative test for copper using bicinchoninic acid. Anal Biochem 226:80–84CrossRefGoogle Scholar
  9. Chen Y, Mao H, Zhang X, Gong Y, Zhao N (1999) Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism. Int J Biol Macromol 26:129–134CrossRefGoogle Scholar
  10. Edwards RA, Whittaker MM, Whittaker JW, Baker EN, Jameson GB (2001) Removing a hydrogen bond in the dimer interface of Escherichia coli manganese superoxide dismutase alters structure and reactivity. Biochemistry 40:4622–4632CrossRefGoogle Scholar
  11. Ellis MJ, Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS (2004) Observation of an unprecedented Cu bis–His site: crystal structure of the H129V mutant of nitrite reductase. Inorg Chem 43:7591–7593CrossRefGoogle Scholar
  12. Freire E, van Osdol WW, Mayorga OL, Sanchez-Ruiz JM (1990) Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem 19:159–188CrossRefGoogle Scholar
  13. Godden JW, Turley S, Teller DC, Adman ET, Liu MY, Payne WJ, LeGall J (1991) The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253:438–442CrossRefADSGoogle Scholar
  14. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153CrossRefGoogle Scholar
  15. Hough MA, Ellis MJ, Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS (2005) High resolution structural studies of mutants provide insights into catalysis and electron transfer processes in copper nitrite reductase. J Mol Biol 350:300–309CrossRefGoogle Scholar
  16. Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2:1953–1956CrossRefGoogle Scholar
  17. Kallrot N, Nilsson K, Rasmussen T, Ryde U (2005) Theoretical study of structure of catalytic of copper site in nitrite reductase. Int J Quantum Chem 102:520–541CrossRefGoogle Scholar
  18. Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Temperature-induced changes in copper centers and protein conformation of two fungal laccase from Coriolus hirsutus and Coriolus zonatus. Biochim Biophys Acta 1547:397–407Google Scholar
  19. Kurganov BI, Lyubarev AE, Sanchez-Ruiz JM, Shnyrov VL (1997) Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophys Chem 69:125–135CrossRefGoogle Scholar
  20. LaCroix LB, Shadle SE, Wang Y, Averill BA, Hedman B, Hodgson KO, Solomon EI (1996) Electronic structure of the perturbed blue copper site in nitrite reductase: spectroscopic properties, bonding, and implications for the entatic/rack state. J Am Chem Soc 118:7755–7768CrossRefGoogle Scholar
  21. La Rosa C, Grasso DM, Milardi D, Guzzi R, Sportelli L (1995) Thermodynamics of the thermal unfolding of azurin. J Phys Chem 99:14864–14870CrossRefGoogle Scholar
  22. Libby E, Averill BA (1992) Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem Biophys Res Commun 187:1529–1535CrossRefGoogle Scholar
  23. Lyubarev AE, Kurganov BI, Burlakova AA, Orlov VN (1998) Irreversible thermal denaturation of uridine phosphorylase from Escherichia coli K-12. Biophys Chem 70:247–257CrossRefGoogle Scholar
  24. Maithal K, Ravindra G, Nagaraj G, Singh SK, Balaram H, Balaram P (2002) Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. Protein Eng 15:575–584CrossRefGoogle Scholar
  25. McGarvey BR (1967) Electron spin resonance of transition metal complexes. In: Carlin R (ed) Transition metal chemistry, vol 3. M. Dekker, New York, pp 90–201Google Scholar
  26. Murphy MEP, Turley S, Kukimoto M, Nishiyama M, Horinouchi S, Sasaki H, Tanokura M, Adman ET (1995) Structure of Alcaligenes faecalis nitrite reductase and a copper site mutant, M150E, that contains zinc. Biochemistry 34:12107–12117CrossRefGoogle Scholar
  27. Murphy MEP, Turley S, Adman ET (1997) Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. J Biol Chem 45:28455–28460CrossRefGoogle Scholar
  28. Nishiyama M, Suzuki J, Kukimoto M, Ohnuki T, Horinouchi S, Beppu T (1993) Cloning and characterization of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli. J Gen Microbiol 139:725–733Google Scholar
  29. Ramilo CA, Leveque V, Guan Y, Lepock JR, Tainer JA, Nick HS, Silverman DN (1999) Interrupting the hydrogen bond network at the active site of human manganese superoxide dismutase. J Biol Chem 274:27711–27716CrossRefGoogle Scholar
  30. Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophys J 61:921–935CrossRefGoogle Scholar
  31. Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652CrossRefGoogle Scholar
  32. Sandberg A, Leckner J, Shi Y, Schwarz FP, Karlsson BG (2002) Effects of metal ligation and oxygen on the reversibility of the thermal denaturation of Pseudomonas aeruginosa azurin. Biochemistry 41:1060–1069CrossRefGoogle Scholar
  33. Stirpe A, Guzzi R, Wijma H, Verbeet MPh, Canters GW, Sportelli L (2005) Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase. Biochim Biophys Acta 1752:47–55Google Scholar
  34. Stirpe A, Sportelli L, Guzzi R (2006) A comparative investigation of the thermal unfolding of pseudoazurin in the Cu(II)-holo and apo form. Biopolymers 83:487–497CrossRefGoogle Scholar
  35. Suzuki S, Deligeer, Yamaguchi K, Kataoka K, Kobayashi K, Tagawa S, Kohzuma T, Shidara S, Iwasaki H (1997) Spectroscopic characterization and intramolecular electron transfer processes of native and type 2 copper depleted nitrite reductases. J Biol Inor Chem 2:265–274CrossRefGoogle Scholar
  36. Thorolfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martinez A (2002) l-phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry 41:7573–7585CrossRefGoogle Scholar
  37. Tigerstrom A, Schwarz FP, Karlsson BG, Okvist M, Alvarez-Rua C, Maeder D, Robb FT, Sjolin L (2004) Effects of a novel disulfide bond and engineered electrostatic interactions on the thermostability of azurin. Biochemistry 43:12563–12574CrossRefGoogle Scholar
  38. Wijma HJ, Boulanger MJ, Molon A, Fittipaldi M, Huber M, Murphy MEP, Verbeet MPh, Canters GW (2003) Reconstitution of the type-1 active site of the H145G/A variants of nitrite reductase by ligand insertion. Biochemistry 42:4075–4083CrossRefGoogle Scholar
  39. Zale SE, Klibanov AM (1986) Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry 25:5432–5444CrossRefGoogle Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  • Andrea Stirpe
    • 1
  • Luigi Sportelli
    • 1
  • Hein Wijma
    • 2
  • Martin Ph. Verbeet
    • 2
  • Rita Guzzi
    • 1
  1. 1.Dipartimento di Fisica e Unità CNISMUniversità della CalabriaArcavacata di RendeItaly
  2. 2.Gorleaus Laboratories, Metallo Protein GroupLeiden UniversityLeidenThe Netherlands

Personalised recommendations