European Biophysics Journal

, Volume 36, Issue 3, pp 213–224 | Cite as

A molecular dynamics study of Cyclophilin A free and in complex with the Ala-Pro dipeptide

Original Paper


Six different molecular dynamics simulations of Cyclophilin A, three with the protein free in water and three with the Ala-Pro dipeptide bound to the protein, have been performed, and analysed with respect to structure and hydration of the active site. The water structure in the binding pocket of the free Cyclophilin A was found to mimic the experimentally obtained binding cis conformation of the dipeptide. Cyclophilin A is a peptidyl–prolyl cis–trans isomerase (PPIase), but the mechanism of the cis/trans isomerization is not exactly clear. This study was performed to understand better the binding between dipeptide and Cyclophilin A, but also two previously proposed isomerization mechanisms are discussed.

Supplementary material

249_2006_121_MOESM1_ESM.pdf (160 kb)
Supplementary data (PDF 161 kb)


  1. Ackerson B, Rey O, Canon J, Krogstad P (1998) Cells with high Cyclophilin A content support replication of human immunodeficiency virus type 1 gag mutants with decreased ability to incorporate Cyclophilin A. J Virol 72(1):303–308Google Scholar
  2. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford Science Publications, OxfordGoogle Scholar
  3. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271CrossRefGoogle Scholar
  4. Braun W, Kallen J, Mikol V, Walkinshaw MD, Wüthrich K (1995) Three-dimensional structure and actions of immunosuppressants and their immunophilins. FASEB J 9(1):63–72Google Scholar
  5. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  6. Cardenas ME, Lim E, Heitman J (1995) Mutations that perturb Cyclophilin A ligand binding pocket confer cyclosporin a resistance in Saccharomyces cerevisiae. J Biol Chem 270(36):20997–21002CrossRefGoogle Scholar
  7. Clubb RT, Ferguson SB, Walsh CT, Wagner G (1994) Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33(10):2761–2772CrossRefGoogle Scholar
  8. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefADSGoogle Scholar
  9. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295(5559):1520–1523CrossRefADSGoogle Scholar
  10. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206):476–478CrossRefADSGoogle Scholar
  11. Fischer S, Michnick S, Karplus M (1993) A mechanism for rotamase catalysis by the FK506 binding protein (fkbr). Biochemistry 32(50):13830–13837CrossRefGoogle Scholar
  12. Franke EK, Yuan HE, Luban J (1994) Specific incorporation of Cyclophilin A into hiv-1 virions. Nature 372(6504):359–362CrossRefADSGoogle Scholar
  13. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human Cyclophilin A bound to the amino-terminal domain of hiv-1 capsid. Cell 87(7):1285–1294CrossRefGoogle Scholar
  14. Grathwohl C, Wüthrich K (1981) NMR studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20(12):2623–2633CrossRefGoogle Scholar
  15. Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55(3):423–436CrossRefGoogle Scholar
  16. Hennig L, Christner C, Kipping M, Schelbert B, Rücknagel KP, Grabley S, Küllertz G, Fischer G (1998) Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37(17):5953–5960CrossRefGoogle Scholar
  17. Hoover WG (1985) Canonical dynamics: equilibrium phase-scape distribution. Phys Rev A 31(3):1695–1697CrossRefADSGoogle Scholar
  18. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  19. Hur S, Bruice TC (2002) The mechanism of cis–trans isomerization of prolyl peptides by cyclophilin. J Am Chem Soc 124(25):7303–7313CrossRefGoogle Scholar
  20. Ivery MT (2000) Immunophilins: switched on protein binding domains? Med Res Rev 20(6):452–484CrossRefGoogle Scholar
  21. Kallen J, Walkinshaw MD (1992) The x-ray structure of a tetrapeptide bound to the active site of human Cyclophilin A. FEBS Lett 300(3):286–290CrossRefGoogle Scholar
  22. Kallen J, Spitzfaden C, Zurini MG, Wider G, Widmer H, Wüthrich K, Walkinshaw MD (1991) Structure of human Cyclophilin and its binding site for Cyclosporin A determined by x-ray crystallography and NMR spectroscopy. Nature 353(6341):276–279CrossRefADSGoogle Scholar
  23. Kallen J, Mikol V, Taylor P, Walkinshaw MD (1998) X-ray structures and analysis of 11 cyclosporin derivatives complexed with Cyclophilin A. J Mol Biol 283(2):435–449CrossRefGoogle Scholar
  24. Ke H (1992) Similarities and differences between human Cyclophilin A and other beta-barrel structures. Structural refinement at 1.63 A resolution. J Mol Biol 228(2):539–550CrossRefGoogle Scholar
  25. Ke H, Zydowsky LD, Liu J, Walsh CT (1991) Crystal structure of recombinant human t-cell cyclophilin a at 2.5 A resolution. Proc Natl Acad Sci USA 88(21):9483–9487CrossRefADSGoogle Scholar
  26. Ke H, Mayrose D, Cao W (1993a) Crystal structure of cyclophilin a complexed with substrate ala-pro suggests a solvent-assisted mechanism of cis-trans isomerization. Proc Natl Acad Sci USA 90(8):3324–3328CrossRefADSGoogle Scholar
  27. Ke H, Zhao Y, Luo F, Weissman I, Friedman J (1993b) Crystal structure of murine cyclophilin c complexed with immunosuppressive drug cyclosporin a. Proc Natl Acad Sci USA 90(20):11850–11854CrossRefADSGoogle Scholar
  28. Ke H, Mayrose D, Belshaw PJ, Alberg DG, Schreiber SL, Chang ZY, Etzkorn FA, Ho S, Walsh CT (1994) Crystal structures of cyclophilin a complexed with cyclosporin a and n-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin a. Structure 2(1):33–44CrossRefGoogle Scholar
  29. Konno M, Ito M, Hayano T, Takahashi N (1996) The substrate-binding site in escherichia coli cyclophilin a preferably recognizes a cis-proline isomer or a highly distorted form of the trans isomer. J Mol Biol 256(5):897–908CrossRefGoogle Scholar
  30. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  31. Mark P, Nilsson L (2001a) Structure and dynamics of the TIP3P, SPC, and SPC/È water models at 298 K. J Phys Chem A 105(43):9954–9960CrossRefGoogle Scholar
  32. Mark P, Nilsson L (2001b) Molecular dynamics simulations of the ala-pro dipeptide in water: conformational dynamics of trans and cis isomers using different water models. J Phys Chem B 105(33):8028–8035CrossRefGoogle Scholar
  33. Mark P, Nilsson L (2002a) Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J Comput Chem 23(13):1211–1219CrossRefGoogle Scholar
  34. Mark P, Nilsson L (2002b) A molecular dynamics study of tryptophan in water. J Phys Chem B 106(36):9440–9445CrossRefGoogle Scholar
  35. Mikol V, Kallen J, Pflügl G, Walkinshaw MD (1993) X-ray structure of a monomeric Cyclophilin A–Cyclosporin A crystal complex at 2.1 A resolution. J Mol Biol 234(4):1119–1130CrossRefGoogle Scholar
  36. Mikol V, Kallen J, Walkinshaw MD (1994) X-ray structure of a Cyclophilin B/cyclosporin complex: comparison with Cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci USA 91(11):5183–5186CrossRefADSGoogle Scholar
  37. Mikol V, Ma D, Carlow CK (1998) Crystal structure of the cyclophilin-like domain from the parasitic nematode brugia malayi. Protein Sci 7(6):1310–1316Google Scholar
  38. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268CrossRefADSGoogle Scholar
  39. Nosé S (1990) Constant-temperature molecular dynamics. J Phys Condens Matter 2:115–119CrossRefADSGoogle Scholar
  40. Orozco M, Tirado-Rives J, Jorgensen WL (1993) Mechanism for the rotamase activity of FK506 binding protein from molecular dynamics simulations. Biochemistry 32(47):12864–12874CrossRefGoogle Scholar
  41. Ottiger M, Zerbe O, Güntert P, Wüthrich K (1997) The nmr solution conformation of unligated human Cyclophilin A. J Mol Biol 272(1):64–81CrossRefGoogle Scholar
  42. Pflügl G, Kallen J, Schirmer T, Jansonius JN, Zurini MG, Walkinshaw MD (1993) X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 361(6407):91–94CrossRefADSGoogle Scholar
  43. Pflügl GM, Kallen J, Jansonius JN, Walkinshaw MD (1994) The molecular replacement solution and x-ray refinement to 2.8 A of a decameric complex of human cyclophilin a with the immunosuppressive drug cyclosporin a. J Mol Biol 244(4):385–409CrossRefGoogle Scholar
  44. Pliyev BK, Gurvits BY (1999) Peptidyl-prolyl cis-trans isomerases: structure and functions. Biochemistry (Mosc) 64(7):738–751Google Scholar
  45. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefADSGoogle Scholar
  46. Sayle R, Milner-White EJ (1995) RasMol: biomolecular graphics for all. Trends Biochem Sci 20:374–376CrossRefGoogle Scholar
  47. Scholz C, Schindler T. Dolinski K, Heitman J, Schmid FX (1997) Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. FEBS Lett 414(1):69–73CrossRefGoogle Scholar
  48. Scholz C, Maier P, Dolinski K, Heitman J, Schmid FX (1999) R73A and H144Q mutants of the yeast mitochondrial cyclophilin cpr3 exhibit a low prolyl isomerase activity in both peptide and protein-folding assays. FEBS Lett 443(3):367–369CrossRefGoogle Scholar
  49. Sherry B, Zybarth G, Alfano M, Dubrovsky L, Mitchell R, Rich D, Ulrich P, Bucala R, Cerami A, Bukrinsky M (1998) Role of Cyclophilin A in the uptake of hiv-1 by macrophages and T lymphocytes. Proc Natl Acad Sci USA 95(4):1758–1763CrossRefADSGoogle Scholar
  50. Spitzfaden C, Weber HP, Braun W, Kallen J, Wider G, Widmer H, Walkinshaw MD, Wüthrich K (1992) Cyclosporin A-cyclophilin complex formation. A model based on x-ray and NMR data. FEBS Lett 300(3):291–300CrossRefGoogle Scholar
  51. Spitzfaden C, Braun W, Wider G, Widmer H, Wüthrich K (1994) Determination of the NMR solution structure of the Cyclophilin A-Cyclosporin A complex. J Biomol NMR 4(4):463–482CrossRefGoogle Scholar
  52. Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the Cyclosporin A-binding protein Cyclophilin. Nature 337(6206):473–475CrossRefADSGoogle Scholar
  53. Taylor P, Husi H, Kontopidis G, Walkinshaw MD (1997) Structures of cyclophilin-ligand complexes. Prog Biophys Mol Biol 67(2–3):155–181CrossRefGoogle Scholar
  54. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Göttlinger HG (1994) Functional association of cyclophilin a with hiv-1 virions. Nature 372(6504):363–365CrossRefADSGoogle Scholar
  55. Theriault Y, Logan TM, Meadows R, Yu L, Olejniczak ET, Holzman TF, Simmer RL, Fesik SW (1993) Solution structure of the Cyclosporin A/Cyclophilin complex by NMR. Nature 361(6407):88–91CrossRefADSGoogle Scholar
  56. Yoo S, Myszka DG, Yeh C, McMurray M, Hill CP, Sundquist WI (1997) Molecular recognition in the hiv-1 capsid/cyclophilin a complex. J Mol Biol 269(5):780–795CrossRefGoogle Scholar
  57. van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem Int Ed Engl 29:992–1023CrossRefGoogle Scholar
  58. Zhao Y, Ke H (1996a) Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization. Biochemistry 35(23):7356–7361CrossRefGoogle Scholar
  59. Zhao Y, Ke H (1996b) Mechanistic implication of crystal structures of the cyclophilin-dipeptide complexes. Biochemistry 35(23):7362–7368CrossRefGoogle Scholar
  60. Zhao Y, Chen Y, Schutkowski M, Fisher G, Ke H (1997) Cyclophilin A complexed with a fragment of hiv-1 gag protein: insight into hiv-1 infectious activity. Structure 5(1):139–146CrossRefGoogle Scholar
  61. Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin a separate peptidyl-prolyl isomerase activity from cyclosporin a binding and calcineurin inhibition. Protein Sci 1(9):1092–1099CrossRefGoogle Scholar

Copyright information

© EBSA 2007

Authors and Affiliations

  1. 1.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
  2. 2.School of Biotechnology, The Department of Theoretical ChemistryRoyal Institute of Technology, AlbaNova University CenterStockholmSweden

Personalised recommendations