European Biophysics Journal

, Volume 35, Issue 7, pp 611–620

Neutron Laue macromolecular crystallography

  • Flora Meilleur
  • Dean A. A. Myles
  • Matthew P. Blakeley
Article

Abstract

Recent progress in neutron protein crystallography such as the use of the Laue technique and improved neutron optics and detector technologies have dramatically improved the speed and precision with which neutron protein structures can now be determined. These studies are providing unique and complementary insights on hydrogen and hydration in protein crystal structures that are not available from X-ray structures alone. Parallel improvements in modern molecular biology now allow fully (per)deuterated protein samples to be produced for neutron scattering that essentially eradicate the large—and ultimately limiting—hydrogen incoherent scattering background that has hampered such studies in the past. High quality neutron data can now be collected to near atomic resolution (∼2.0 Å) for proteins of up to ∼50 kDa molecular weight using crystals of volume ∼0.1 mm3 on the Laue diffractometer at ILL. The ability to flash-cool and collect high resolution neutron data from protein crystals at cryogenic temperature (15 K) has opened the way for kinetic crystallography on freeze trapped systems. Current instrument developments now promise to reduce crystal volume requirements by a further order of magnitude, making neutron protein crystallography a more accessible and routine technique.

References

  1. Arai S, Chatake T, Ohhara T, Kurihara K, Tanaka I, Suzuki N, Fujimoto Z, Mizuno H, Niimura N (2005) Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements. Nucleic Acids Res 33(9):3017–3024CrossRefGoogle Scholar
  2. Artero JB, Hartlein M, McSweeney S, Timmins P (2006) A comparison of refined X-ray structures of hydrogenated and perdeuterated rat gammaE-crystallin in H2O and D2O. Acta Crystallogr D Biol Crystallogr 61(Pt 11):1541–1549Google Scholar
  3. Bau R (2004) Neutron diffraction studies on rubredoxin from Pyrococcus furiosus. J Synchrotron Radiat 11(Pt 1):76–79CrossRefGoogle Scholar
  4. Bennett BC, Myles DA, Howell EE, Dealwis CG (2005) Preliminary neutron diffraction studies of Escherichia coli dihydrofolate reductase bound to the anticancer drug methotrexate. Acta Crystallogr D Biol Crystallogr 61(Pt 5):574–579CrossRefGoogle Scholar
  5. Blakeley MP, Mitschler A, Hazemann I, Meilleur F, Myles DA, Podjarny A (2006) Comparison of hydrogen determination with X-ray and neutron crystallography in a human aldose reductase-inhibitor complex. Eur Biophys J( this issue)Google Scholar
  6. Blakeley MP, Kalb AJ, Helliwell JR, Myles DA (2004) The 15-K neutron structure of saccharide-free concanavalin A. Proc Natl Acad Sci USA 101(47):16405–16410CrossRefADSGoogle Scholar
  7. Bon C, Lehmann MS, Wilkinson C (1999) Quasi-Laue neutron-diffraction study of the water arrangement in crystals of triclinic hen egg-white lysozyme. Acta Crystallogr D Biol Crystallogr 55(Pt 5):978–987CrossRefGoogle Scholar
  8. Budayova-Spano M, Bonneté F, Ferté N, El Hajji M, Meilleur F, Blakeley MP, Castro B (2006) Acta Crystallogr F Biol Crystallogr 62:306–309CrossRefGoogle Scholar
  9. Budayova-Spano M, Fisher SZ, Dauvergne MT, Agbandje-McKenna M, Silverman DN, Myles DA, McKenna R (2006) Production and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II. Acta Crystallograph Sect F Struct Biol Crystallogr 62(Pt 1):6–9Google Scholar
  10. Chatake T, Tanaka I, Umino H, Arai S, Niimura N (2005) The hydration structure of a Z-DNA hexameric duplex determined by a neutron diffraction technique. Acta Crystallogr D Biol Crystallogr 61(Pt 8):1088–1098CrossRefGoogle Scholar
  11. Chatake T, Ostermann A, Kurihara K, Parak FG, Mizuno N, Voordouw G, Higuchi Y, Tanaka I, Niimura N (2004) Hydration structures in proteins and neutron diffraction experiment on dissimilatory sulfite reductase D (DsrD). J Synchrotron Radiat 11(Pt 1):72–75Google Scholar
  12. Chatake T, Ostermann A, Kurihara K, Parak FG, Niimura N (2003) Hydration in proteins observed by high-resolution neutron crystallography. Proteins 50(3):516–523CrossRefGoogle Scholar
  13. Cheng XD, Schoenborn BP (1991) Neutron diffraction study of carbonmonoxymyoglobin. J Mol Biol 220(2):381–399CrossRefGoogle Scholar
  14. Cipriani F, Dauvergne F, Gabriel A, Wilkinson C, Lehmann MS (1994) Image plate detectors for macromolecular neutron diffractometry. Biophys Chem 53:5–13CrossRefGoogle Scholar
  15. Cipriani F, Castagna JC, Wilkinson C, Lehmann MS, Buldt G (1996) A neutron image plate quasi-Laue diffractometer for protein crystallography. Basic Life Sci 64:423–431Google Scholar
  16. Coates L, Erskine PT, Wood SP, Myles DA, Cooper JB (2001) A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism. Biochemistry 40(44):13149–13157CrossRefGoogle Scholar
  17. Cooper JB, Myles DA (2000) A preliminary neutron Laue diffraction study of the aspartic proteinase endothiapepsin. Acta Crystallogr D Biol Crystallogr 56(Pt 2):246–248CrossRefGoogle Scholar
  18. Daniels BV, Myles DA, Forsyth VT, Lawson CL (2003) Crystals of Trp repressor suitable for high-resolution neutron Laue diffraction studies. Acta Crystallogr D Biol Crystallogr 59(Pt 1):136–138Google Scholar
  19. Dauter Z, Lamzin VS, Wilson KS (1997) The benefits of atomic resolution. Curr Opin Struct Biol 7(5):681–688CrossRefGoogle Scholar
  20. Engler N, Ostermann A, Niimura N, Parak FG (2003) Hydrogen atoms in proteins: positions and dynamics. Proc Natl Acad Sci USA 100(18):10243–10248CrossRefADSGoogle Scholar
  21. Habash J, Raftery J, Nuttall R, Price HJ, Wilkinson C, Kalb AJ, Helliwell JR (2000) Direct determination of the positions of the deuterium atoms of the bound water in-concanavalin A by neutron Laue crystallography. Acta Crystallogr D Biol Crystallogr 56 ( Pt 5):541–50CrossRefGoogle Scholar
  22. Hanson BL, Langan P, Katz AK, Li X, Harp JM, Glusker JP, Schoenborn BP, Bunick GJ (2004) A preliminary time-of-flight neutron diffraction study of Streptomyces rubiginosus D-xylose isomerase. Acta Crystallogr D Biol Crystallogr 60(Pt 2):241–249CrossRefGoogle Scholar
  23. Hazemann I, Dauvergne MT, Blakeley MP, Meilleur F, Haertlein M, Van Dorsselaer A, Mitschler A, Myles DA, Podjarny A (2005) High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase. Acta Crystallogr D Biol Crystallogr 61(Pt 10):1413–1417CrossRefGoogle Scholar
  24. Helliwell JR (1997) Neutron Laue diffraction does it faster. Nat Struct Biol 4(11):874–876CrossRefGoogle Scholar
  25. Høghøj P, Anderson IS, Ebisawa T, Takeda T (1996) Fabrication and performance of a large wavelength band multilayer monochromator. J Phys Soc Jpn 65:296–298Google Scholar
  26. Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins 55(4):792–804CrossRefGoogle Scholar
  27. Korszun ZR (1997) Neutron macromolecular crystallography. Methods Enzymol 276: 219–232Google Scholar
  28. Kossiakoff AA, Spencer SA (1981) Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry 20(22):6462–6474CrossRefGoogle Scholar
  29. Kurihara K, Tanaka I, Niimura N, Refai Muslih M, Ostermann A (2004) A new neutron single-crystal diffractometer dedicated for biological macromolecules (BIX-4). J Synchrotron Radiat 11:68–71CrossRefGoogle Scholar
  30. Langan P, Li X, Hanson BL, Coates L, Mustyakimov M (2006) Synthesis, capillary crystallization and preliminary joint X-ray and neutron crystallographic study of Z-DNA without polyamine at low pH. Acta Crystallogr F Biol Crystallogr 62Google Scholar
  31. Lawson CL, Chin AS (2003) Analysis of neutron Laue diffraction from deuterium-exchanged Trp-repressor. Transactions ACA 38Google Scholar
  32. Longhi S, Czjzek M, Cambillau C (1998) Messages from ultrahigh resolution crystal structures. Curr Opin Struct Biol 8(6):730–737CrossRefGoogle Scholar
  33. Li X, Langan P, Bau R, Tsyba I, Jenney FE Jr, Adams MW, Schoenborn BP (2004) W3Y single mutant of rubredoxin from Pyrococcus furiosus: a preliminary time-of-flight neutron study. Acta Crystallogr D Biol Crystallogr 60(Pt 1):200–202Google Scholar
  34. Maeda M, Chatake T, Tanaka I, Ostermann A, Niimura N (2004) Crystallization of a large single crystal of cubic insulin for neutron protein crystallography. J Synchrotron Radiat 11(Pt 1):41–44CrossRefGoogle Scholar
  35. Mason SA, Bentley GA, McIntyre GJ (1984) Deuterium exchange in lysozyme at 1.4-A resolution. Basic Life Sci 27:323–234Google Scholar
  36. Meilleur F, Snell EH, van der Woerd MJ, Judge RA, Myles DA (2006) A quasi-Laue neutron crystallographic study of D-xylose isomerase. Eur Biophys J (this issue)Google Scholar
  37. Meilleur F, Blakeley MP, Myles DA (2005) Neutron Laue analysis of hydrogen and hydration in protein structure. In: Niimura N., Mizuno H., Helliwell J.R., Westhof E, (Eds) Hydrogen and hydration sensitive structural biology. pp 75–85Google Scholar
  38. Meilleur F, Dauvergne MT, Schlichting I, Myles DA (2005) Production and X-ray crystallographic analysis of fully deuterated cytochrome P450cam. Acta Crystallogr D Biol Crystallogr 61(Pt5):539–544CrossRefGoogle Scholar
  39. Myles DA, Bon C, Langan P, Cipriani F, Castagna JC, Lehmann MS, Wilkinson C (1998) Neutron Laue diffraction in macromolecular crystallography. Physica B 241–243:1122–1130Google Scholar
  40. Myles DA, Timmins PA, Wilkinson C (2000) ILL Millenium Programme, Document ILL01CA01T, pages 42–45Google Scholar
  41. Myles DA (2003) Recent trends and advances in neutron macromolecular crystallography. Transactions ACA 38Google Scholar
  42. Niimura N, Minezaki Y, Nonaka T, Castagna JC, Cipriani F, Hoghoj P, Lehmann MS, Wilkinson C (1997a) Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat Struct Biol 4(11):909–914CrossRefGoogle Scholar
  43. Niimura N (1999) Neutrons expand the field of structural biology. Curr Opin Struct Biol 9(5):602–608CrossRefGoogle Scholar
  44. Niimura N, Minezaki Y, Nonaka T, Castagna JC, Cipriani F, Hoghoj P, Lehmann MS, Wilkinson C (1997b) Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat Struct Biol 4(11):909–914CrossRefGoogle Scholar
  45. Ostermann A, Tanaka I, Engler N, Niimura N, Parak FG (2002) Hydrogen and deuterium in myoglobin as seen by a neutron structure determination at 1.5 Å resolution. Biophys Chem 95(3):183–193CrossRefGoogle Scholar
  46. Phillips SE, Schoenborn BP (1981) Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 292(5818):81–82CrossRefADSGoogle Scholar
  47. Podjarny A, Cachau RE, Schneider T, Van Zandt M, Joachimiak A (2004) Subatomic and atomic crystallographic studies of aldose reductase: implications for inhibitor binding. Cell Mol Life Sci 61(7–8):763–773Google Scholar
  48. Raghavan NV, Schoenborn BP (1984) The structure of bound water and refinement of acid metmyoglobin. Basic Life Sci 27:247–259Google Scholar
  49. Schmidt A, Lamzin VS (2002) Veni, vidi, vici - atomic resolution unravelling the mysteries of protein function. Curr Opin Struct Biol 12(6):698–703CrossRefGoogle Scholar
  50. Schmidt A, Jelsch C, Ostergaard P, Rypniewski W, Lamzin VS (2003) Trypsin revisited: crystallography AT (SUB) atomic resolution and quantum chemistry revealing details of catalysis. J Biol Chem 278(44):43357–43362CrossRefGoogle Scholar
  51. Schoenborn BP, Langan P (2004) Protein crystallography with spallation neutrons. J Synchrotron Radiat 11:80–82CrossRefGoogle Scholar
  52. Schultz AJ, Thiyagarajan P, Hodges JP, Rehm C, Myles DA, Langan P, Mesecar AD (2005) Design of the next generation neutron macromolecular diffractometer (MaNDi) at the Spallation Neutron Source. J Appl Cryst 38:964–974CrossRefGoogle Scholar
  53. Shu F, Ramakrishnan V, Schoenborn BP (2000) Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proc Natl Acad Sci USA 97(8):3872–3877CrossRefADSGoogle Scholar
  54. Snell EH, van der Woerd MJ, Damon M, Judge RA, Myles DA, Meilleur F (2006) Optimizing crystal volume for neutron diffraction: Xylose Isomerase. Eur Biophys J, this issueGoogle Scholar
  55. Sukumar N, Langan P, Mathews FS, Jones LH, Thiyagarajan P, Schoenborn BP, Davidson VL (2005) A preliminary time-of-flight neutron diffraction study on amicyanin from Paracoccus denitrificans. Acta Crystallogr D Biol Crystallogr 61(Pt 5):640–642CrossRefGoogle Scholar
  56. Teeter MM, Kossiakoff AA (1984) The neutron structure of the hydrophobic plant protein crambin. In: Schoenborn B (ed) Neutrons in Biology. Plenum Press, New York, pp 335–348Google Scholar
  57. Tuominen VU, Myles DA, Dauvergne MT, Lahti R, Heikinheimo P, Goldman A (2004) Production and preliminary analysis of perdeuterated yeast inorganic pyrophosphatase crystals suitable for neutron diffraction. Acta Crystallogr D Biol Crystallogr 60(Pt 3):606–609CrossRefGoogle Scholar
  58. Wlodawer A, Savage H, Dodson G (1989) Structure of insulin: results of joint neutron and X-ray refinement. Acta Crystallogr B 45( Pt 1):99–107CrossRefGoogle Scholar
  59. Wlodawer A, Sjolin L (1984) Application of joint neutron and x-ray refinement to the investigation of the structure of ribonuclease A at 2.0-A resolution. Basic Life Sci 27:349–364Google Scholar

Copyright information

© EBSA 2006

Authors and Affiliations

  • Flora Meilleur
    • 1
  • Dean A. A. Myles
    • 2
  • Matthew P. Blakeley
    • 3
  1. 1.Institut Laue LangevinGrenoble Cedex 9France
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.European Molecular Biology LaboratoryGrenobleFrance

Personalised recommendations