European Biophysics Journal

, Volume 35, Issue 7, pp 621–632 | Cite as

Optimizing crystal volume for neutron diffraction: D-xylose isomerase

  • Edward H. Snell
  • Mark J. van der Woerd
  • Michael Damon
  • Russell A. Judge
  • Dean A. A. Myles
  • Flora Meilleur
Article

Abstract

Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, i.e. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experimental design and optimization techniques. By using response surface methods we have optimized the xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with a minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

References

  1. Asboth B, Naray-Szabo G (2000) Mechanism of action of d-xylose isomerase. Curr Protein Pept Sci 1:237–254CrossRefPubMedGoogle Scholar
  2. Broutin I, Ries-Kautt M, Ducruix A (1995) Lysozyme solubility in H2O and D2O solutions as a function of sodium chloride concentration. J Appl Cryst 28:614–617CrossRefGoogle Scholar
  3. Budayova-Spano M, Lafont S, Astier JP, Ebel C, Veesler S (2000) Comparison of solubility and interactions of aprotinin (BPTI) solutions in H2O and D2O. J Cryst Growth 217:311–319CrossRefADSGoogle Scholar
  4. Burke MW, Leardi R, Judge RA, Pusey ML (2001) Quantifying main trends in lysozyme nucleation: the effect of precipitant concentration, supersaturation and impurities. Cryst Growth Design 1:333–337CrossRefGoogle Scholar
  5. Carrell HL, Glusker JP, Burger V, Manfre F, Tritsch D, Biellmann JF (1989) X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc Natl Acad Sci USA 86:4440–4444PubMedCrossRefADSGoogle Scholar
  6. Carter CC (1994) Quantitative analysis in the characterization and optimization of protein crystal growth. Acta Crystallogr D Biol Crystallogr 50:572–590PubMedCrossRefGoogle Scholar
  7. Carter CW Jr, Carter CW (1979) Protein crystallization using incomplete factorial experiments. J Biol Chem 254:12219–12223PubMedGoogle Scholar
  8. Chayen NE (1998) Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr D Biol Crystallogr 54(Pt 1):8–15CrossRefPubMedGoogle Scholar
  9. Christopher GK, Phipps AG, Gray RJ (1998) Temperature-dependent solubility of selected proteins. J Cryst Growth 191:820–826CrossRefADSGoogle Scholar
  10. Darcy PA, Wiencek JM (1998) Estimating lysozyme crystallization growth rates and solubility from isothermal microcalorimetry. Acta Crystallogr D Biol Crystallogr 54:1387–1394CrossRefPubMedGoogle Scholar
  11. Farber GK, Glasfeld A, Tiraby G, Ringe D, Petsko GA (1989) Crystallographic studies of the mechanism of xylose isomerase. Biochemistry 28:7289–7297CrossRefPubMedGoogle Scholar
  12. Fenn TD, Ringe D, Petsko GA (2004) Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. Biochemistry 43:6464–6474CrossRefPubMedGoogle Scholar
  13. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–189CrossRefGoogle Scholar
  14. Gripon G, Legrand L, Rosenman I, Vidal M, Robert MC, Boue F (1997a) Lysozyme–lysozyme interactions in under- and super-saturated solutions: a simple relation between the second virial coeffieicnts in H2O and D2O. J Cryst Growth 178:575–584CrossRefADSGoogle Scholar
  15. Gripon G, Legrand L, Rosenman I, Vidal O, Robert MC, Boue F (1997b) Lysozyme solubility in H2O and D2O solutions: a simple relationship. J Cryst Growth 177:238–247CrossRefADSGoogle Scholar
  16. Hazemann I, Dauvergne MT, Blakeley MP, Meilleur F, Haertlein M, Van Dorsselaer A, Mitschler A, Myles DA, Podjarny A (2005) High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase. Acta Crystallogr D Biol Crystallogr 61:1413–1417CrossRefPubMedGoogle Scholar
  17. Judge RA, Jacobs RS, Frazier T, Snell EH, Pusey ML (1999) The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals. Biophys J 77:1585–1593PubMedCrossRefGoogle Scholar
  18. Liu XQ, Sano Y (1998a) Effect of Na+ and K+ ions on the initial crystallization process of lysozyme in the presence of D2O and H2O. J Protein Chem 17:479–484CrossRefGoogle Scholar
  19. Liu XQ, Sano Y (1998b) Kinetic studies on the initial crystallization process of lysozyme in the presence of D2O and H2O. J Protein Chem 17:9–14CrossRefMATHGoogle Scholar
  20. Long MM, DeLucas LJ, Smith C, Carson M, Moore K, Harrington MD, Pillion DJ, Bishop SP, Rosenblum WM, Naumann RJ, Chait A, Prahl J, Bugg CE (1994) Protein crystal growth in microgravity-temperature induced large scale crystallization of insulin. Microgravity Sci Technol 7:196–202PubMedGoogle Scholar
  21. Meilleur F, Dauvergne MT, Schlichting I, Myles DA (2005) Production and X-ray crystallographic analysis of fully deuterated cytochrome P450cam. Acta Crystallogr D Biol Crystallogr 61:539–544CrossRefPubMedGoogle Scholar
  22. Meilleur F, Snell EH, van der Woerd MJ, Judge RA, Myles DA (2006) A Quasi-Laue neutron crystallographic study of d-xylose isomerase. Eur Biophys J (in press)Google Scholar
  23. Nakazato K, Homma T, Tomo T (2004) Rapid solubility measurement of protein crystals as a function of precipitant concentration with micro-dialysis cell and two-beam interferometer. J Synchrotron Radiat 11:34–37CrossRefPubMedGoogle Scholar
  24. Niimura N (1999) Neutrons expand the field of structural biology. Curr Opin Struct Biol 9:602–608CrossRefPubMedGoogle Scholar
  25. Rosenberger F, Howard SB, Sowers JW, Nyce TA (1993) Temperature-dependance of protein solubility—determination and application to crystallization in X-ray capillaries. J Cryst Growth 129:1–12CrossRefGoogle Scholar
  26. Shu F, Ramakrishnan V, Schoenborn BP (2000) Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proc Natl Acad Sci USA 97:3872–3877CrossRefPubMedADSGoogle Scholar

Copyright information

© EBSA 2006

Authors and Affiliations

  • Edward H. Snell
    • 1
  • Mark J. van der Woerd
    • 2
  • Michael Damon
    • 2
  • Russell A. Judge
    • 3
  • Dean A. A. Myles
    • 4
  • Flora Meilleur
    • 5
  1. 1.Hauptman-Woodward Medical Research Institute BuffaloUSA
  2. 2.BAE SystemsHuntsvilleUSA
  3. 3.Abbott LaboratoriesAbbott ParkUSA
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA
  5. 5.Institut Laue LangevinGrenobleFrance

Personalised recommendations