European Biophysics Journal

, Volume 35, Issue 7, pp 601–609

A quasi-Laue neutron crystallographic study of d-xylose isomerase

  • Flora Meilleur
  • Edward H. Snell
  • Mark J. van der Woerd
  • Russell A. Judge
  • Dean A. A. Myles


The location of hydrogen atoms in enzyme structures can bring critical understanding of catalytic mechanism. However, whilst it is often difficult to determine the position of hydrogen atoms using X-ray crystallography even with subatomic (< 1.0 Å) resolution data available, neutron crystallography provides an experimental tool to directly localize hydrogen/deuterium atoms in biological macromolecules at resolution of 1.5–2.0 Å. d-Xylose isomerase (d-xylose ketol-isomerase, EC is a 43 kDa enzyme that catalyses the first reaction in the catabolism of d-xylose. Linearization and isomerization of d-xylose at the active site of d-xylose isomerase rely upon a complex hydrogen transfer. Neutron quasi-Laue data at 2.2 Å resolution were collected at room temperature on a partially deuterated Streptomyces rubiginosusd-xylose isomerase crystal using the LADI instrument at ILL with the objective to provide insight into the enzymatic mechanism. The neutron structure shows unambiguously that residue His 53 is doubly protonated at the active site of the enzyme. This suggests that the reaction proceeds through an acid catalyzed opening of the sugar ring, which is in accord with the mechanism suggested by Fenn et al. (Biochemistry 43(21): 6464–6474, 2004). This is the first report of direct observation of double protonation of His 53 and the first validation of the ring opening mechanism at the active site of d-xylose isomerase.


  1. Arzt S, Campbell JW, Harding MM, Hao Q, Helliwell JR (1999) LSCALE—the new normalization, scaling and absorption correction program in the Daresbury Laue software suite. J Appl Cryst 32:554–562CrossRefGoogle Scholar
  2. Allen KN, Lavie A, Farber GK, Glasfeld A, Petsko GA, Ringe D (1994a) Isotopic exchange plus substrate and inhibition kinetics of d-xylose isomerase do not support a proton-transfer mechanism. Biochemistry 33(6):1481–1487CrossRefGoogle Scholar
  3. Allen KN, Lavie A, Glasfeld A, Tanada TN, Gerrity DP, Carlson SC, Farber GK, Petsko GA, Ringe D (1994b) Role of the divalent metal ion in sugar binding, ring opening, and isomerization by d-xylose isomerase: replacement of a catalytic metal by an amino acid. Biochemistry 33(6):1488–1494CrossRefGoogle Scholar
  4. Asboth B, Naray-Szabo G (2000) Mechanism of action of d-xylose isomerase. Curr Protein Pept Sci 1(3):237–254CrossRefGoogle Scholar
  5. Blakeley MP, Kalb AJ, Helliwell JR, Myles DA (2004) The 15-K neutron structure of saccharide-free concanavalin A. Proc Natl Acad Sci USA 101(47):16405–16410CrossRefADSGoogle Scholar
  6. Bon C, Lehmann MS, Wilkinson C (1999) Quasi-Laue neutron-diffraction study of the water arrangement in crystals of triclinic hen egg-white lysozyme. Acta Crystallogr D Biol Crystallogr 55(Pt 5):978–987CrossRefGoogle Scholar
  7. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  8. Campbell JW, Hao Q, Harding MM, Nguti ND, Wilkinson C (1998) LAUEGEN version 6.0 and INTLDM. J Appl Cryst 31:496–502CrossRefGoogle Scholar
  9. Carrell HL, Glusker JP, Burger V, Manfre F, Tritsch D, Biellmann JF (1989) X-ray analysis of d-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc Natl Acad Sci USA 86(12):4440–4444CrossRefADSGoogle Scholar
  10. Cipriani F, Castagna JC, Wilkinson C, Lehmann MS, Buldt G (1996) A neutron image plate quasi-Laue diffractometer for protein crystallography. Basic Life Sci 64:423–431Google Scholar
  11. Coates L, Erskine PT, Wood SP, Myles DA, Cooper JB (2001) A neutron Laue diffraction study of endothiapepsin: implications for the aspartic proteinase mechanism. Biochemistry 40(44):13149–13157CrossRefGoogle Scholar
  12. Collyer CA, Henrick K, Blow DM (1990) Mechanism for aldose-ketose interconversion by d-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol 212(1):211–235CrossRefGoogle Scholar
  13. Fenn TD, Ringe D, Petsko GA (2004) Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. Biochemistry 43(21):6464–6474CrossRefGoogle Scholar
  14. Habash J, Raftery J, Nuttall R, Price HJ, Wilkinson C, Kalb AJ, Helliwell JR (2000) Direct determination of the positions of the deuterium atoms of the bound water in—concanavalin A by neutron Laue crystallography. Acta Crystallogr D Biol Crystallogr 56(Pt 5):541–550CrossRefGoogle Scholar
  15. Jenkins J, Janin J, Rey F, Chiadmi M, Van Tilbeurgh H, Lasters I, De Maeyer M, Van Belle D, Wodak SJ, Lauwereys M et al (1992) Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31(24):5449–5458CrossRefGoogle Scholar
  16. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47(Pt2):110–119CrossRefGoogle Scholar
  17. Kurihara K, Tanaka I, Niimura N, Refai Muslih M, Ostermann A (2004) A new neutron single-crystal diffractometer dedicated for biological macromolecules (BIX-4). J Synchrotron Radiat 11:68–71CrossRefGoogle Scholar
  18. Lavie A, Allen KN, Petsko GA, Ringe D (1994) X-ray crystallographic structures of d-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33(18):5469–5480CrossRefGoogle Scholar
  19. Meilleur F (2004) Ph.D Thesis. University J. Fourier, Grenoble, FranceGoogle Scholar
  20. Meilleur F, Myles DAA, Blakeley MP (2006) Neutron Laue macromolecular crystallography. Eur Biophys J (in press)Google Scholar
  21. Myles DAA, Bon C, Langan P, Cipriani F, Castagna JC, Lehmann MS, Wilkinson C (1998) Neutron Laue diffraction in macromolecular crystallography. Physica B 241–243:1122–30Google Scholar
  22. Niimura N, Minezaki Y, Nonaka T, Castagna JC, Cipriani F, Hoghoj P, Lehmann MS, Wilkinson C (1997) Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat Struct Biol 4(11):909–914CrossRefGoogle Scholar
  23. Shu F, Ramakrishnan V, Schoenborn BP (2000) Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proc Natl Acad Sci USA 97(8):3872–3877CrossRefADSGoogle Scholar
  24. Snell EH, van der Woerd MJ, Damon M, Judge RA, Myles DA, Meilleur F: Optimizing crystal volume for neutron diffraction (this issue)Google Scholar
  25. Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL (1991) A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and d-xylose. Proteins 9(3):153–173CrossRefGoogle Scholar
  26. Wlodawer A, Savage H, Dodson G (1989) Structure of insulin: results of joint neutron and X-ray refinement. Acta Crystallogr B 45(Pt 1):99–107CrossRefGoogle Scholar

Copyright information

© EBSA 2006

Authors and Affiliations

  • Flora Meilleur
    • 1
  • Edward H. Snell
    • 2
  • Mark J. van der Woerd
    • 3
  • Russell A. Judge
    • 4
  • Dean A. A. Myles
    • 5
  1. 1.Institut Laue LangevinGrenobleFrance
  2. 2.Hauptman-Woodward Medical Research InstituteBuffaloUSA
  3. 3.BAE SystemsHuntsvilleUSA
  4. 4.Abbott LaboratoriesAbbott ParkUSA
  5. 5.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations