Advertisement

Initial guesses generation for fluorescence intensity distribution analysis

  • Victor V. Skakun
  • Eugene G. Novikov
  • Vladimir V. Apanasovich
  • Hans J. Tanke
  • André M. Deelder
  • Oleg A. Mayboroda
Article

Abstract

The growing number of applications of Fluorescence Intensity Distribution Analysis (FIDA) demands for new approaches in data processing, aiming at increased speed and robustness. Iterative algorithms of parameter estimation, although proven to be universal and accurate, require some initial guesses (IG) of the unknown parameters. An essential component of any data processing technology, IG become especially important in case of FIDA, since even with apparently reasonable, and physically admissible but randomly chosen IG, the iterative procedure may converge to situations where the FIDA model cannot be evaluated correctly. In the present work we introduce an approach for IG generation in FIDA experiments based on the method of moments. IG are generated for the sample parameters: brightness, concentration, and for the parameters related to experimental set-up: background, observation volume profile. A number of analytical simplifications were introduced in order to increase the accuracy and robustness of the numerical algorithms. The performance of the developed method has been tested on number of simulations and experimental data. Iterative fitting with generated IG proved to be more robust and at least five times faster than with an arbitrarily chosen IG. Applicability of the proposed method for quick estimation of brightness and concentrations is discussed.

Keywords

Fluorescence intensity distribution analysis Photon counting histogram Fluorescence cumulants analysis Fluorescence fluctuation spectroscopy Fluorescence correlation spectroscopy Data analysis Method of moments 

References

  1. Chen Y, Müller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567Google Scholar
  2. Chen Y, Müller JD, Tetin SY, Tyner JD, Gratton E (2000) Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys J 79:1074–1084Google Scholar
  3. Chen Y, Müller JD, Ruan Q, Gratton E (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J 82:133–144Google Scholar
  4. Deelder AM, van Dam GJ, Kornelis D, Fillie YE, van Zeyl RJ (1996) Schistosoma: analysis of monoclonal antibodies reactive with the circulating antigens CAA and CCA. Parasitology 112(Pt 1):21–35Google Scholar
  5. Demas JN (1983) Exited state lifetime measurements. Academic Press, New YorkGoogle Scholar
  6. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  7. Evotec Biosystems AG (1998) International Patent Application PCT/EP97/05619 and International Publication No. WO 98/16814Google Scholar
  8. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705CrossRefGoogle Scholar
  9. Johnson LM, Faunt LM (1992) Parameter estimation by least–squares methods. Methods Enzymol 210:1–37CrossRefGoogle Scholar
  10. Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci USA 96:13756–13761CrossRefADSGoogle Scholar
  11. Kask P, Palo K, Fay N, Brand L, Mets Ü, Ullmann D, Jungmann J, Pschorr J, Gall K (2000) Two-dimensional fluorescence intensity distribution analysis: theory and applications. Biophys J 78:1703–1713Google Scholar
  12. Kask P, Eggeling C, Palo K, Ullmann D, Gall K (2002) Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice. In: Kraayenhof R, Visser AJWG, Gerritsen HC (eds) Fluorescent spectroscopy, imaging and probes. New tools in chemical, physical and life sciences. Springer-Verlag, Berlin Heidelberg, pp 153–181Google Scholar
  13. Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10(N6):1938–1945CrossRefADSMathSciNetGoogle Scholar
  14. Korn GA, Korn TM (1968) Mathematical handbook for scientists and engineers. Definitions, theorems and formulas for reference and review. Second, enlarged and revised edition. McGraw-Hill Book Company, New YorkGoogle Scholar
  15. Lau HT (1995) A numerical library in C for scientists and engineers. CRC Press Inc., Boca RatonzbMATHGoogle Scholar
  16. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:704–708CrossRefADSGoogle Scholar
  17. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61CrossRefGoogle Scholar
  18. Marquardt DW (1963) Algorithm for least squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441CrossRefMathSciNetzbMATHGoogle Scholar
  19. Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631Google Scholar
  20. Müller JD (2004) Cumulant analysis in fluctuation spectroscopy. Biophys J 86:3981–3992CrossRefGoogle Scholar
  21. Müller JD, Chen Y, Gratton E (2000) Resolving heterogeneity on the single molecular level with the photon counting histogram. Biophys J 78:474–486Google Scholar
  22. Palo K, Mets Ü, Jager S, Kask P, Gall K (2000) Fluorescence intensity multiple distribution analysis: concurrent determination of diffusion times and molecular brightness. Biophys J 79:2858–2866Google Scholar
  23. Palo K, Brandt L, Eggeling C, Jager S, Kask P, Gall K (2002) Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Biophys J 83:605–618CrossRefGoogle Scholar
  24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. The art of scientific computing. 2nd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  25. Qian H (1990) On the statistics of fluorescence correlation spectroscopy. Biophys Chem 38:49–57CrossRefGoogle Scholar
  26. Qian H, Elson EL (1990a) On the analysis of high order moments of fluorescence fluctuations. Biophys J 57:375–380Google Scholar
  27. Qian H, Elson EL (1990b) Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci USA 87:5479–5483CrossRefADSGoogle Scholar
  28. Remoortere A, Hokke CH, van Dam GJ, van Dam I, Deelder AM, van den Eijnden DH (2000) Various stages of schistosoma express Lewis(x), LacdiNAc, GalNAcbeta1-4 (Fucalpha1-3)GlcNAc and GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc carbohydrate epitopes: detection with monoclonal antibodies that are characterized by enzymatically synthesized neoglycoproteins. Glycobiology 10:601–609CrossRefGoogle Scholar
  29. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rates and low background: analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar

Copyright information

© EBSA 2006

Authors and Affiliations

  • Victor V. Skakun
    • 1
    • 3
  • Eugene G. Novikov
    • 2
  • Vladimir V. Apanasovich
    • 3
  • Hans J. Tanke
    • 4
  • André M. Deelder
    • 1
  • Oleg A. Mayboroda
    • 1
  1. 1.Department of ParasitologyLeiden University Medical CentreLeidenThe Netherlands
  2. 2.Service BioinformatiqueInstitut CURIEParisFrance
  3. 3.Department of Systems AnalysisBelarusian State UniversityMinskBelarus
  4. 4.Department of Molecular Cell BiologyLeiden University Medical CentreLeidenThe Netherlands

Personalised recommendations