Advertisement

European Biophysics Journal

, Volume 34, Issue 8, pp 1041–1048 | Cite as

Microstructural analysis of the effects of incorporation of myelin basic protein in phospholipid layers

  • L. CristofoliniEmail author
  • M. P. Fontana
  • F. Serra
  • A. Fasano
  • P. Riccio
  • O. Konovalov
Article

Abstract

We report an X-ray reflectivity study on the effects of adsorption of myelin basic protein (MBP) on Langmuir monolayers and on deposited Langmuir–Schaefer multilayers of the phospholipid dipalmitoyl phosphatidylglycerol (DPPG). We provide for the first time, direct microscopic evidence on the destructuring effects of MBP leading to plasticity of the DPPG layers supporting commonly accepted models of the stabilizing role of MBP in the myelin membrane. We also show how protein adsorption onto the layer is determined both by electrostatic and nonspecific hydrophobic interactions.

Keywords

Myelin basic protein X-ray reflectivity Langmuir–Blodgett 

References

  1. Bates IR, Harauz G (2003). Molecular dynamics exposes alpha-helices in myelin basic protein. J Mol Model 5:290–297CrossRefGoogle Scholar
  2. Bates IR, Boggs JM, Feix JB, Harauz G (2003) Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling. J Biol Chem 278:29041–29047CrossRefPubMedGoogle Scholar
  3. Beniac DR, Luckevich MD, Czarnota GJ, Tompkins TA, Ridsdale RA, Ottensmeyer FP, Moscarello MA, Harauz G (1997) Three-dimensional structure of myelin basic protein. I. Reconstruction via angular reconstitution of randomly oriented single particles. J Biol Chem 272:4261–4268CrossRefPubMedGoogle Scholar
  4. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175. Erratum in: Nat Med (2000) 6:1412Google Scholar
  5. Boggs JM, Moscarello MA (1982) Structural organization of myelin: role of lipid–protein interaction determined in model system. In: Jost PC, Griffith OH (eds) Lipid–protein interactions vol 2. Wiley, New York, pp 1–51Google Scholar
  6. Boggs JM, Wood DD, Moscarello MA (1981a) Hydrophobic and electrostatic interactions of myelin basic protein with lipid. Participation of N-terminal and C-terminal portions. Biochemistry 20:1065–1073CrossRefGoogle Scholar
  7. Boggs JM, Stamp D, Moscarello MA (1981b) Interaction of myelin basic protein with dipalmitoylphosphatidylglycerol: dependence on the lipid phase and investigation of a metastable state. Biochemistry 20:6066–6072CrossRefGoogle Scholar
  8. Cristofolini L, Fontana MP, Berzina T, Konovalov O (2002) Molecular relaxation and microscopic structure of multilayers and superlattices of a photosensitive liquid-crystalline polymer. Phys Rev E 66:041801CrossRefGoogle Scholar
  9. Daillant J, Gibaud A (1999) X-Ray and neutron reflectivity: principles and applications. Springer, BerlinGoogle Scholar
  10. Deibler GE, Martenson RE, Kies MW (1972) Large-scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem 61:897–946Google Scholar
  11. Deibler GE, Boyd LF, Kies MW (1984) Proteolytic activity associated with purified myelin basic protein. In: Alvord EC Jr, Kies MW, Suckling AJ (eds) Experimental allergic encephalomyelitis: a useful model for multiple sclerosis. Liss, New York pp 249–256Google Scholar
  12. Facci P, Cavatorta P, Cristofolini L, Fontana MP, Fasano A, Riccio P (2000) Kinetic and structural study of the interaction of myelin basic protein with dipalmitoylphosphatidyl-glycerol layers. Biophys J 78:1413–1419PubMedGoogle Scholar
  13. Gow A, Smith RJ (1989) The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil. Biochem J 257:535–540PubMedGoogle Scholar
  14. Graf K, Baltes H, Ahrens E, Helm CA, Husted CA (2002) Structure of hydroxylated galactocerebrosides from myelin at the air–water interface. Biophys J 82:896–907PubMedGoogle Scholar
  15. Haas H, Torrielli M, Steitz R, Cavatorta P, Sorbi R, Fasano A, Riccio P, Gliozzi A (1998) Myelin model membranes on solid substrates. Thin Solid Films 327–328:627–631CrossRefGoogle Scholar
  16. Haas H, Oliveira CLP, Torriani IL, Polverini E, Fasano A, Carlone G, Cavatorta P, Riccio P (2004) Small angle X-ray scattering from lipid-bound myelin basic protein in solution. Biophys J 86:455–460PubMedGoogle Scholar
  17. Harauz G, Ishyiama N, Hill CMD, Bates JR, Libich DS, Farès C (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35:503–542CrossRefPubMedGoogle Scholar
  18. Harper PE, Gruner SN, Lewis RNAH, McElhaney RN (2000) Electron density modeling and reconstruction of infinite periodic minimal surfaces (IPMS) based phases in lipid–water systems. Eur Phys J E 2:229–245Google Scholar
  19. Hu Y, Douvedski I, Wood D, Moscarello M, Husted C, Genain C, Zasadzinski JA, Israelvichvili J (2004) Synergistic interactions of lipids and myelin basic protein. Proc Natl Acad Sci 101:13466–13471CrossRefPubMedGoogle Scholar
  20. Kaganer VM, Moehwald H, Dutta P (1999) Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71:779–819CrossRefGoogle Scholar
  21. Kirschner DA, Ganser L (1980) Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–210CrossRefPubMedGoogle Scholar
  22. Kjaer K, Als-Nielsen J, Helm CA, Tippman-Krayer P, Mowald H (1989) Synchrotron X-ray diffraction and reflection studies of arachidic acid monolayers at the air–water interface. J Phys Chem 93:3200–3206CrossRefGoogle Scholar
  23. Konovalov O, Myagkov I, Struth B, Lohner K (2002) Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study. Eur Biophys J 31:428–437CrossRefPubMedGoogle Scholar
  24. Konovalov O, Struth B, Smilgies DM (2004) Troika II (ID10B): a versatile beamline for studies of liquid and solid interfaces. In: Warwick et al (eds) AIP conference proceedings No. 705, synchrotron radiation instrumentation: eighth international conference, pp352–355Google Scholar
  25. Liebes LF, Zand R, Phillips WD (1975) Solution behavior, circular dichroism and 22 HMz PMR studies of the bovine myelin basic protein. Biochim Biophys Acta 405:27–39Google Scholar
  26. Majewski J, Khul TL, Kjaer K, Smith GS (2001) Packing of ganglioside-phospholipid monolayers: an X-ray diffraction and reflectivity study. Biophys J 81:2707–2715PubMedGoogle Scholar
  27. Martenson RE (1992) Myelin: biology and chemistry. CRC Press, Boca RatonGoogle Scholar
  28. Mueller H, Butt HJ, Bamberg E (1999) Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophys J 76:1072–1079PubMedGoogle Scholar
  29. Mueller H, Butt HJ, Bamberg E (2000) Adsorption of membrane-associated proteins to lipid bilayers studied with an atomic force microscope: myelin basic protein and cytochrome. J Phys Chem B 104:4552–4559CrossRefGoogle Scholar
  30. Nevot L, Croce P (1980) Caractérisation des surfaces par réflexion rasant de rayons x: application á l’étude du polissage de quelques verres silicates. Rev Phys Appl 15:761–779Google Scholar
  31. Ohler B, Graf K, Bragg R, Lemons T, Coe R, Genain C, Israelachvili J, Husted C (2004) Role of lipid interactions in autoimmune demyelination. Biochim Biophys Acta 1688:10–17PubMedGoogle Scholar
  32. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369CrossRefGoogle Scholar
  33. Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P (1999) Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J 28:351–355CrossRefPubMedGoogle Scholar
  34. Polverini E, Arisi S, Cavatorta P, Berzina T, Cristofolini L, Fasano A, Riccio P, Fontana MP (2003) Interaction of myelin basic protein with phospholipid monolayers: mechanism of protein penetration. Langmuir 19:872–877CrossRefGoogle Scholar
  35. Riccio P, Masotti L, Cavatorta P, De Santis A, Juretic D, Bobba A, Pasquali-Ronchetti I, Quagliariello E (1986) Myelin basic protein ability to organize lipid bilayers: structural transition in bilayers of lysophosphatidylcholine micelles. Biochem Biophys Res Commun 134:313–319CrossRefPubMedGoogle Scholar
  36. Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42:149–155CrossRefPubMedGoogle Scholar
  37. Roberts G (1990) Langmuir–Blodgett films. Plenum Press, New YorkGoogle Scholar
  38. Schwartz DK (1997) Langmuir–Blodgett film structure. Surf Sci Rep 27:245–334CrossRefGoogle Scholar
  39. Smith R (1992) The basic protein of CNS myelin: its structure and ligand binding. J Neurochem 59:1589–1608PubMedGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  • L. Cristofolini
    • 1
    • 5
    Email author
  • M. P. Fontana
    • 1
    • 5
  • F. Serra
    • 1
  • A. Fasano
    • 2
  • P. Riccio
    • 3
  • O. Konovalov
    • 4
  1. 1.Dipartmento di Fisica e Istituto Nazionale per la Fisica della MateriaUniversita‘ di ParmaParmaItaly
  2. 2.Dipartimento di Biochimica e Biologia MolecolareUniversita‘ di BariBariItaly
  3. 3.Dipartimento di Biologia, Difesa, Biotecnologie Agro-ForestaliUniversita‘ della Basilicata, Campus di Macchia RomanaPotenzaItaly
  4. 4.European Synchrotron Radiation FacilityGrenobleFrance
  5. 5.Istituto Nazionale per la Fisica della MateriaCentro Ricerca e Sviluppo SOFTRomeItaly

Personalised recommendations