European Biophysics Journal

, Volume 34, Issue 8, pp 1066–1070 | Cite as

Amphiphile-induced tubular budding of the bilayer membrane

  • Veronika Kralj-Iglič
  • Henry Hägerstrand
  • Peter Veranič
  • Kristijan Jezernik
  • Blaž Babnik
  • Dorit R. Gauger
  • Aleš Iglič
Biophysics Letter


Amphiphile-induced tubular budding of the erythrocyte membrane was studied using transmission electron microscopy. No chiral patterns of the intramembraneous particles were found, either on the cylindrical buds, or on the tubular nanoexovesicles. In agreement with these observations, the tubular budding may be explained by in-plane ordering of anisotropic membrane inclusions in the buds where the difference between the principal membrane curvatures is very large. In contrast to previously reported theories, no direct external mechanical force is needed to explain tubular budding of the bilayer membrane.


Tubular budding Amphiphiles Nanotubes Freeze-fracture electron microscopy Deviatoric elasticity 



Stimulating discussions with Hans U. Lutz and Sylvio May are gratefully acknowledged. The Åbo Akademy University supported the stay of A.I. at Åbo Akademy University in Åbo/Turku.


  1. Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91CrossRefPubMedGoogle Scholar
  2. Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Phys Rev Lett 88:238101/1–4CrossRefPubMedGoogle Scholar
  3. Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14:923–931PubMedGoogle Scholar
  4. Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca RatonGoogle Scholar
  5. Fournier JB (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76:4436–4439CrossRefPubMedGoogle Scholar
  6. Hägerstrand H, Kralj-Iglič V, Bobrowska-Hägerstrand M, Iglič A (1999) Membrane skeleton detachment in spherical and cylindrical microexovesicles. Bull Math Biol 61:1019–1030CrossRefGoogle Scholar
  7. Helfrich W (1974) Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z Naturforsch 29c:510–515Google Scholar
  8. Hwang WC, Waugh RE (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red cells. Biophys J 72:2669–2678PubMedGoogle Scholar
  9. Iglič A, Kralj-Iglič V, Majhenc J (1999) Cylindrical shapes of closed lipid bilayer structures correspond to an extreme area difference between the two monolayers of the bilayer. J Biomech 32:1343–1347CrossRefPubMedGoogle Scholar
  10. Iglič A, Hägerstrand H, Bobrowska-Hägerstrand M, Arrigler V, Kralj-Iglič V (2003) Possible role of phospholipid nanotubes in directed transport of membrane vesicles. Phys Lett A 310:493–497CrossRefGoogle Scholar
  11. Iglič A, Fošnarič M, Hägerstrand H, Kralj-Iglič V (2004) Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett 574(1–3):9–12CrossRefPubMedGoogle Scholar
  12. Kralj-Iglič V, Svetina S, Žekš B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24:311–321PubMedGoogle Scholar
  13. Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10:5–8Google Scholar
  14. Kralj-Iglič V, Iglič A, Hägerstrand H, Peterlin P (2000) Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys Rev E 61:4230–4234CrossRefGoogle Scholar
  15. Lutz HU, Lomant AJ, McMillan P, Wehrli E (1977) Rearrangements of integral membrane components during in vitro aging of sheep erythrocyte membranes. J Cell Biol 74:389–398CrossRefPubMedGoogle Scholar
  16. Miao L, Fourcade B, Rao M, Wortis M, Zia RKP (1991) Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys Rev E 43:6843–6856Google Scholar
  17. Miao L, Seifert U, Wortis M, Döbereiner HG (1994) Budding transitions of fluid-bilayer vesicles: effect of area difference elasticity. Phys Rev E 49:5389–5407CrossRefGoogle Scholar
  18. Mukhopadhyay R, Lim G, Wortis M (2002) Echinocyte shapes: bending, stretching and shear determine spicule shape and spacing. Biophys J 82:1756–1772PubMedGoogle Scholar
  19. Rustom A, Saffrich R, Markovič I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010CrossRefPubMedGoogle Scholar
  20. Seifert U, Lipowsky R (1995) Morphology of vesicles. In: Lipowsky R, Sackmann E (eds) Structure and dynamics of membranes. From cells to vesicles. Elsevier, Amsterdam, pp 403–463Google Scholar
  21. Selinger JV, MacKintosh FC, Schnur JM (1996) Theory of cylindrical tubules and helical ribbons of chiral lipid membranes. Phys Rev E 53:3804–3818CrossRefGoogle Scholar
  22. Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461PubMedGoogle Scholar
  23. Stokke BT, Mikkelsen A, Elgsaeter A (1986) The human erythrocyte membrane skeleton may be an ionic gel. Eur Biophys J 13:203–218PubMedGoogle Scholar
  24. Tsafrir I, Caspi Y, Guedeau MA, Arzi T, Stavans J (2003) Budding and tubulation of highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91:138102/1–4CrossRefPubMedGoogle Scholar
  25. Yamashita Y, Masum SM, Tanaka T, Tamba Y, Yamazaki M (2002) Shape changes of giant unilamellar vesicles of phosphatidiylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18:9638–9641CrossRefGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  • Veronika Kralj-Iglič
    • 1
    • 4
  • Henry Hägerstrand
    • 2
  • Peter Veranič
    • 3
  • Kristijan Jezernik
    • 3
  • Blaž Babnik
    • 4
  • Dorit R. Gauger
    • 5
  • Aleš Iglič
    • 4
  1. 1.Institute of Biophysics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of BiologyÅbo Akademi UniversityÅbo/TurkuFinland
  3. 3.Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Laboratory of Physics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Friedrich Schiller UniversityJenaGermany

Personalised recommendations