European Biophysics Journal

, Volume 35, Issue 4, pp 340–351 | Cite as

Metal binding in amyloid β-peptides shows intra- and inter-peptide coordination modes

  • Francesco Stellato
  • Gianfranco Menestrina
  • Mauro Dalla Serra
  • Cristina Potrich
  • Rossella Tomazzolli
  • Wolfram Meyer-Klaucke
  • Silvia MoranteEmail author


X-ray absorption spectroscopy data show different metal binding site structures in β-amyloid peptides according to whether they are complexed with Cu2+ or Zn2+ ions. While the geometry around copper is stably consistent with an intra-peptide binding with three metal-coordinated Histidine residues, the zinc coordination mode depends on specific solution conditions. In particular, different sample preparations are seen to lead to different geometries around the absorber that are compatible with either an intra- or an inter-peptide coordination mode. This result reinforces the hypothesis that assigns different physiological roles to the two metals, with zinc favoring peptide aggregation and, as a consequence, plaque formation.


Histidine Residue Imidazole Ring Coordination Shell Protein Data Bank Format Multiple Scattering Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alzheimer’s disease

Amyloid β-peptide


β-Amyloid precursor protein


X-ray absorption spectroscopy


European Molecular Biology Laboratory


Deutsches Elektronen Synchrotron


Extended X-ray absorption fine structure


Metallo-protein Database and Browser


Multiple scattering


X-ray absorption near edge




Protein Data Bank


Fourier transform



We are very grateful to G.C. Rossi for discussions and a careful reading of the manuscript. We would also like to thank G. La Penna for useful suggestions and discussions. This work was partly supported by INFM, INFN, CNR, ITC and the “European Community-Research Infrastructure Action” under the FP6 “Structuring the European Research Area Programme” contract number RII3/CT/2004/5060008.


  1. Benfatto M, Natoli CR, Bianconi A, Garcia J, Marcelli A, Fanfoni M, Davoli I (1986) Multiple-scattering regime and higher-order correlations in x-ray-absorption spectra of liquid solutions. Phys Rev B 34:5774–5781CrossRefADSGoogle Scholar
  2. Bianconi A, Congiu-Castellano A, Dell’Ariccia M, Giovannelli A, Morante S, Burattini E, Durham PJ (1986) Local Fe site structure in the tense-to-relaxed transition in carp deoxyhemoglobin: a XANES (x-ray absorption near edge structure) study. Proc Natl Acad Sci USA 83:7736–7740CrossRefADSGoogle Scholar
  3. Binsted N (1998) EXCURV98: CCLRC Daresbury laboratory computer programGoogle Scholar
  4. Binsted N, Strange RW, Hasnain SS (1992) Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochemistry 31:12117–12125CrossRefPubMedGoogle Scholar
  5. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191CrossRefPubMedGoogle Scholar
  6. Butterfield DA, Boyd-Kimball D (2005) The critical role of methionine 35 in Alzheimer’s amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta 1703:149–156PubMedGoogle Scholar
  7. Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME (2002) MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucleic Acids Res 30:379–382CrossRefPubMedGoogle Scholar
  8. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Lynch T, Volitakis I, Fraser FW, Kim YS, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676CrossRefPubMedGoogle Scholar
  9. Cheung KC, Strange RW, Hasnain SS (2000) 3D EXAFS refinement of the Cu site of azurin sheds light on the nature of structural change at the metal centre in an oxidation–reduction process: an integrated approach combining EXAFS and crystallography. Acta Cryst D56:697–704Google Scholar
  10. Comai M, Dalla Serra M, Potrich C, Menestrina G (2003) Cu2+ and Zn2+ effects on beta-amyloid aggregation and structural conformation. Biophys J 84:337aGoogle Scholar
  11. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473CrossRefPubMedGoogle Scholar
  12. D’Angelo P, Benfatto M, Della Longa S, Pavel NV (2002) Evidence of distorted fivefold coordination of the Cu2+ aqua ion from an x-ray absorption spectroscopy quantitative analysis. Phys Rev B 66:1–7CrossRefGoogle Scholar
  13. Finefrock AE, Bush AI, Doraiswamy PM (2003) Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriatr Soc 51:1143–1148CrossRefPubMedGoogle Scholar
  14. Gurman SJ, Binsted N, Ross I (1986) A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple-scattering contributions. J Phys C 19:1845–1861CrossRefADSGoogle Scholar
  15. Hasnain SS, Murphy LM, Strange RW, Grossmann JG, Clarke AR, Jackson GS, Collinge J (2001) XAFS study of the high-affinity copper-binding site of human PrP(91–231) and its low-resolution structure in solution. J Mol Biol 311:467–473CrossRefPubMedGoogle Scholar
  16. Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1977) Zinc-induced Alzheimer’s Aβ1–40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470CrossRefGoogle Scholar
  17. Karr JW, Kaupp LJ, Szalai VA (2004) Amyloid-beta binds Cu2+ in a mononuclear metal ion binding site. J Am Chem Soc 126:13534–13538CrossRefPubMedGoogle Scholar
  18. Karr JW, Akintoye H, Kaupp LJ, Szalai VA (2005) N-terminal deletions modify the Cu2+ binding site in amyloid-β. Biochemistry 44:5478–5487CrossRefPubMedGoogle Scholar
  19. Koningsberger DC, Prins R (eds) (1988) X-ray absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York, and references quoted thereinGoogle Scholar
  20. Kowalik-Jankowska T, Ruta M, Wiśniewska K, Lankiewicz L (2003) Coordination abilities of the 1–16 and 1–28 fragments of β-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study. J Inorg Biochem 95:270–282CrossRefPubMedGoogle Scholar
  21. Lee PA, Pendry JB (1975) Theory of the extended x-ray absorption fine structure. Phys Rev B 11:2795–2811CrossRefADSGoogle Scholar
  22. Lee PA, Citrin PH, Eisenberg P, Kinkaid BM (1981) Extended x-ray absorption fine structure—its strengths and limitations as a structural tool. Rev Mod Phys 53:769–806CrossRefADSGoogle Scholar
  23. Meneghini C, Morante S (1998) The active site structure of tetanus neurotoxin resolved by multiple scattering analysis in X-ray absorption spectroscopy. Biophys J 75:1953–1963PubMedCrossRefGoogle Scholar
  24. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Metal binding modes of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 39:7024–7031CrossRefPubMedGoogle Scholar
  25. Morante S, Gonzalez-Iglesias R, Potrich C, Meneghini C, Meyer-Klaucke W, Menestrina G, Gasset M (2004) Inter- and intra-octarepeat Cu(II) site geometries in the prion protein: implications in Cu(II) binding cooperativity and Cu(II)-mediated assemblies. J Biol Chem 279:11753–11759CrossRefPubMedGoogle Scholar
  26. Natoli CR, Benfatto M (1986) A unifying scheme of interpretation of X-ray absorption spectra based on multiple scattering theory. J Phys (France) Colloq C8 47:11–23Google Scholar
  27. Nolting HF, Hermes C (1992) EXPROG: EMBL EXAFS data analysis and evaluation program package for PC/ATGoogle Scholar
  28. Opazo C, Barria MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98CrossRefPubMedGoogle Scholar
  29. Pepys MB (2001) Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos Trans R Soc Lond B Biol Sci 356:203–210CrossRefPubMedGoogle Scholar
  30. Redecke L, Meyer-Klaucke W, Koker M, Clos J, Georgieva D, Genov N, Echner H, Kalbacher H, Perbandt M, Bredehorst R, Voelter W, Betzel C (2005) Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5. J Biol Chem 280:13987–13992CrossRefPubMedGoogle Scholar
  31. Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to x-ray-absorption fine structure. Phys Rev B 41:8139–8149CrossRefADSGoogle Scholar
  32. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  33. Suzuki K, Miura T, Takeuchi H (2001) Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid β-peptide. Biochem Biophys Res Commun 285:991–996CrossRefPubMedGoogle Scholar
  34. Syme CD, Nadal RC, Rigby SEJ, Viles JH (2004) Copper binding to the amyloid-β (Aβ) peptide associated with Alzheimer’s disease. J Biol Chem 279:18169–18177CrossRefPubMedGoogle Scholar
  35. Teo BK, Lee PA (1979) Ab initio calculations of amplitude and phase functions for extended x-ray absorption fine structure spectroscopy. J Am Chem Soc 101:2815–2832CrossRefGoogle Scholar
  36. Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Nordstedt C (1999) A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 274:12619–12625CrossRefPubMedGoogle Scholar
  37. Tyson TA, Hodgson KO, Natoli CR, Benfatto M (1992) General multiple-scattering scheme for the computation and interpretation of x-ray-absorption fine structure in atomic clusters with applications to SF6, GeCl4, and Br2 molecules. Phys Rev B 46:5997–6019CrossRefADSGoogle Scholar

Copyright information

© EBSA 2006

Authors and Affiliations

  • Francesco Stellato
    • 1
  • Gianfranco Menestrina
    • 2
  • Mauro Dalla Serra
    • 2
  • Cristina Potrich
    • 2
  • Rossella Tomazzolli
    • 2
  • Wolfram Meyer-Klaucke
    • 3
  • Silvia Morante
    • 1
    Email author
  1. 1.Dipartimento di FisicaUniversità di Roma “Tor Vergata” INFM and INFNRomaItaly
  2. 2.Consiglio Nazionale delle RicercheIstituto di Biofisica—Sezione di Trento, Via Sommarive 18PovoItaly
  3. 3.European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85HamburgGermany

Personalised recommendations