Advertisement

European Biophysics Journal

, Volume 35, Issue 3, pp 196–204 | Cite as

Cell membrane fluidity related to electroporation and resealing

  • Maša Kandušer
  • Marjeta Šentjurc
  • Damijan Miklavčič
Article

Abstract

In this paper, we report the results of a systematic attempt to relate the intrinsic plasma membrane fluidity of three different cell lines to their electroporation behaviour, which consists of reversible and irreversible electroporation. Apart from electroporation behaviour of given cell lines the time course required for membrane resealing was determined in order to distinguish the effect of resealing time from the cell’s ability to survive given electric pulse parameters. Reversible, irreversible electroporation and membrane resealing were then related to cell membrane fluidity as determined by electron paramagnetic resonance spectroscopy and computer characterization of membrane domains. We found that cell membrane fluidity does not have significant effect on reversible electroporation although there is a tendency for the voltage required for reversible electroporation to increase with increased membrane fluidity. Cell membrane fluidity, however, may affect irreversible electroporation. Nevertheless, this effect, if present, is masked with different time courses of membrane resealing found for the different cell lines studied. The time course of cell membrane resealing itself could be related to the cell’s ability to survive.

Key words

Electroporation Fluidity Order parameter Membrane domain In vitro V-79 DC-3F B16-F1 

Notes

Acknowledgements

This research was supported by the Ministry of Education, Science and Sport of the Republic of Slovenia. The authors wish to express their thanks to Zorka Stolič from the J. Stefan Institute, Ljubljana, Slovenia, for technical assistance.

References

  1. Bloom M, Thewalt JL (1995) Time and distance scales of membrane domain organization. Mol Membr Biol 12:9–13PubMedCrossRefGoogle Scholar
  2. Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation mediated uptake and cell viability. Biophys J 80:755–764PubMedGoogle Scholar
  3. Chen K, Morse PD II, Swartz HM (1988) Kinetics of enzyme-mediated reduction of lipid soluble nitroxide spin labels by living cells. Biochim Biophys Acta 943:477–484PubMedCrossRefGoogle Scholar
  4. Chen S-Y, Yang B, Jacobson K, Sulik KK (1996) The membrane disordering effect on ethanol on neural crest cells in vitro and the protective role of GM1 ganglioside. Alcohol 13:589–595CrossRefPubMedGoogle Scholar
  5. Chen SY, Periasamy A, Yang B, Herman B, Jacobson K, Sulik KK (2000) Differential sensitivity of mouse neural cells to ethanol-induced toxicity. Alcohol 20:75–81CrossRefPubMedGoogle Scholar
  6. Chernomordik LV, Sukharev SI, Popov SV, Pastusenko VF, Sokiroko AV, Abidor IG, Chizmadzev YA (1987) The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta 902:360–373PubMedCrossRefGoogle Scholar
  7. Cole KS (1972) Membranes Ions and Impulses. Berkely, Los Angeles, p 15Google Scholar
  8. Curtain CC, Gordon LM (1984) ESR spectroscopy of membranes. In: Alan R (ed) Membranes, detergents and receptor solubilization. Liss Inc., New York, pp 177–213Google Scholar
  9. Čemazar M, Jarm T, Miklavčič D, Maček-Lebar A, Ihan A, Kopitar NA, Serša G (1998) Effect of electric field induced intensity on electropermeabilization and electro sensitivity of various tumour cell lines in vitro. Electromagnetobiol 17:263–272Google Scholar
  10. Danfelter M, Engstrom P, Person B, Salford LG (1998) Effect of high voltage pulses on survival of Chinese hamster V-79 lung fibroblast cells. Bioelectrochem Bioenerg 47:97–101CrossRefGoogle Scholar
  11. Djuzenova CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G (1996) Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta 1284:143–152PubMedCrossRefGoogle Scholar
  12. Ferber D (2001) Gene therapy: safer and virus free? Science 294:1638–1642CrossRefPubMedGoogle Scholar
  13. Filipič B, Štrancar J (2001) Tuning EPR spectral parameters with genetic algorithm. Appl Soft Comput 1:83–90CrossRefGoogle Scholar
  14. Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793CrossRefPubMedADSGoogle Scholar
  15. Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637PubMedGoogle Scholar
  16. Gabriel B, Teissié J (1999) Time courses of mammalian cell electropermeabilization observed by milisecond imaging of membrane property changes during the pulse. Biophys J 76:2158–2165PubMedGoogle Scholar
  17. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447CrossRefPubMedGoogle Scholar
  18. Gaškova D, Sigler K, Janderova B, Plašek J (1996) Effect of high voltage electric pulses on yeast cells: factors influencing the killing efficiency. Bioelectrochem Bioenerg 39:195–202CrossRefGoogle Scholar
  19. Hamilton WA, Sale JH (1967) Effects of high electric fields on micro organism II. Mechanism of action of the lethal effect. Biochim Biophys Acta 148:789–800Google Scholar
  20. Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022PubMedGoogle Scholar
  21. Jordão AA, Chiarello PG, Arantes MR, Meirelles M, Vannucchi H (2004) Effect of an dose of ethanol on lipid peroxidation in rats: action of vitamin E. Food Chem Toxicol 42:459–464CrossRefPubMedGoogle Scholar
  22. Kandušer M, Fošnarič M, Šentjurc M, Kralj-Iglič V, Hagerstrand H, Iglič A, Miklavčič D (2003) Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC-3F. Colloid Surf A 214:205–217CrossRefGoogle Scholar
  23. Kinoshita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–440CrossRefPubMedADSGoogle Scholar
  24. Kinoshita K, Tsong TY (1979) Voltage induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554:479–497PubMedCrossRefGoogle Scholar
  25. Kotnik T, Maček-Lebar A, Miklavčič D, Mir LM (2000) Evaluation of cell membrane electropermeabilization by means of non-permeant cytotoxic agent. Biotechniques 28:921–926PubMedGoogle Scholar
  26. Kotnik T, Bobanović F, Miklavčič D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291CrossRefGoogle Scholar
  27. Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164PubMedCrossRefGoogle Scholar
  28. Li Y, King MA, Meyer MM (2000) ά/nicotinic recetpor-mediated protection against ethanol-induced oxidative stress and cytotoxicity in PC12 cells. Brain Res 861:165–167CrossRefPubMedGoogle Scholar
  29. Marsh D (1981) Electron spin resonance: spin labels. In: Grell E (ed) Membrane spectroscopy. Springer-Verlang, Berlin, pp 51–142Google Scholar
  30. Meaking WS, Edgerton J, Wharton CW, Meldrum RA (1995) Electroporation induced damage in mammalian cell DNA. Biochim Biophys Acta 1264:357–362PubMedGoogle Scholar
  31. Marszalek P, Liu DS, Tsong TY (1990) Schwan equation and transmembrane potential induced by alternating electric field. Biophys J 58:1053–1058PubMedGoogle Scholar
  32. Meshar A, Holownia A, Bardou LG, Menez J-F (1996) Effect of acetaldehyde generated from ethanol by ADH-transfected CHO cells on their membrane fatty acid profiles. Alcohol 13:611–616CrossRefPubMedGoogle Scholar
  33. Mir LM (2000) Therapeutic perspectives of in vivo electropermeabilization. Bioelectrochemistry 53:1–10CrossRefGoogle Scholar
  34. Mir LM, Tounekti O, Orlowski S (1996) Bleomycin: revival of an old drug. Gen Pharmacol 27:745–748PubMedGoogle Scholar
  35. Neuman MG (2002) Synergetic signaling of apoptosis in vitro by ethanol and acetaminophen. Alcohol 27:89–98CrossRefPubMedGoogle Scholar
  36. Neuman MG, Haber JA, Malkiewicz IM, Cameron RG, Katz GG, Shear NH (2002) Ethanol signals for apoptosis in cultured skin cells. Alcohol 26:179–190CrossRefPubMedGoogle Scholar
  37. Neumann E (1989) The relaxation hysteresis of membrane electroporation. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Plenium Press, New York, pp 61–82Google Scholar
  38. Neumann E (1992) Membrane electroporation and direct gene transfer. Bioelectrochem Bioenerg 28:247–267CrossRefGoogle Scholar
  39. Neumann E, Schaefer-Ridder M, Wang Y, Holschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedGoogle Scholar
  40. Neumann E, Kakorin S, Toesing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16CrossRefPubMedGoogle Scholar
  41. O’Hare MJ, Ormerod MG, Imrie PR, Peacock JH, Asche W (1989) Electropermeabilization and electrosensitivity of different types of mammalian cells. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Plenium Press, New York, pp 319–330Google Scholar
  42. Puc M, Flisar K, Reberšek S, Miklavčič D (2001) Electroporator for in vitro cell permeabilization. Radiol Oncol 35:203–207Google Scholar
  43. Puc M, Kotnik T, Mir L, Miklavčič D (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60:1–10CrossRefPubMedGoogle Scholar
  44. Pucihar G, Kotnik T, Kandušer M, Miklavčič D (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115CrossRefPubMedGoogle Scholar
  45. Rols MP, Teissié J (1989) Ionic strength modulation of electrically induced permeabilization and associated fusion of mammalian cells. Eur J Biochem 179:109–115CrossRefPubMedGoogle Scholar
  46. Rols MP, Teissié J (1990a) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenaon. Biophys J 58:1089–1098PubMedGoogle Scholar
  47. Rols MP, Teissié J (1990b) Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry 29:4561–4567CrossRefPubMedGoogle Scholar
  48. Rols MP, Teissié J (1992) Experimental evidence for the involvememnt of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1111:45–50PubMedCrossRefGoogle Scholar
  49. Rols MP, Dahhou F, Mishra KP, Teissié J (1990) Control of electric field induced cell membrane permeabilization by membrane order. Biochemistry 29:2960–2966CrossRefPubMedGoogle Scholar
  50. Sale AJH, Hamilton WA (1967) Effect of high electric field on micro organisms. I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788Google Scholar
  51. Serša G, Čemažar M, Rudolf Z (2003) Electrochemotherapy: adventages and drawbacks in treatment of cancer patient. Cancer Ther 1:133–142Google Scholar
  52. Šentjurc M, Štrancar J, Koklič T (2002) Membrane domain alteration under the action of biologically active substances: an EPR study. Curr Top Biophys 26:65–73Google Scholar
  53. Štrancar J, Šentjurc M, Schara M (2000) Fast and accurate characterization of biological membranes by EPR spectral simulation of nitroxides. J Magn Reson 142:254–265CrossRefPubMedADSGoogle Scholar
  54. Teissié J, Eynord N, Gabriel B, Rols MP (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19CrossRefPubMedGoogle Scholar
  55. Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM (2001) The ratio of single to double strand DNA brakes and their absolute values determine cell death pathway. Br J Cancer 84:1272–1279CrossRefPubMedGoogle Scholar
  56. Valič B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols M-P, Miklavčič D (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J Biophy 32:519–528CrossRefGoogle Scholar
  57. Vernhes MC, Cabanes PA, Teissié J (1999) Chinese hamster ovary cells sensitivity to localized electrical stress. Bioelectrochem Bioenerg 48:17–25CrossRefPubMedGoogle Scholar
  58. Zimmermann U (1982) Electric field mediated fusion and related electrical phenomena. Biochem Biophys Acta 694:227–277PubMedGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  • Maša Kandušer
    • 1
  • Marjeta Šentjurc
    • 2
  • Damijan Miklavčič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Jozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations