European Biophysics Journal

, Volume 35, Issue 3, pp 190–195 | Cite as

Study of optical properties of electropolymerized melanin films by photopyroelectric spectroscopy

  • José Eduardo de Albuquerque
  • Clare Giacomantonio
  • Andrew G. White
  • Paul Meredith


Photopyroelectric (PPE) spectroscopy, in the 350–1,075 nm wavelength range, was used to study the optical properties of electropolymerized melanin films on indium tin oxide (ITO) coated glass. The PPE intensity signal as a function of the wavelength λ, V n(λ) and its phase F n(λ) were independently measured. Using the PPE signal intensity and the thermal and optical properties of the pyroelectric detector, we were able to calculate the optical absorption coefficient β of melanin in the solid-state. We believe this to be the first such measurement of its kind on this material. Additionally, we found an optical gap in these melanin films at 1.70 eV.


Melanin Photopyroelectric spectroscopy Optical properties 



J. E. de Albuquerque acknowledges UFV for sabbatical leave. This work was partially funded by the Australian Research Council (DP0345309) and by the MURI Center for Photonic Quantum Information Systems, ARO/ARDA Program No. DAAD19-03-1-0199.


  1. Christofides C (1993) Thermal wave photopyroelectric characterization of advanced materials: state of the art. Crit Rev Sol State Mat Sci 18(2):113–174CrossRefMathSciNetGoogle Scholar
  2. Coufal H (1984) Photothermal spectroscopy using a pyroelectric thin-film detector. Appl Phys Lett 44(1):59–61CrossRefADSGoogle Scholar
  3. Crippa PR, Viappiani C (1990) Photoacoustic studies of non-radiative relaxation of excited-states in melanin. Eur Biophys J 17(6):299–305CrossRefPubMedGoogle Scholar
  4. de Albuquerque JE, Melo WLB, Faria RM (2000) Photopyroelectric spectroscopy of polyaniline films. J Polym Sci Polym Phys 38:1294–1300CrossRefGoogle Scholar
  5. de Albuquerque JE, Melo WLB, Faria RM (2002) Photothermal spectroscopy of polyaniline films. Mol Cryst Liq Cryst 374:379–384CrossRefGoogle Scholar
  6. de Albuquerque JE, Melo WLB, Faria RM (2003) Determination of physical parameters of conducting polymers by photothermal spectroscopies. Rev Sci Instrum 74(1):306–308CrossRefADSGoogle Scholar
  7. de Albuquerque JE, Giacomantonio C, White AG, Meredith P (2005) Determination of thermal and optical parameters of melanins by photopyroelectric spectroscopy. Appl Phys Lett 87(6):061920CrossRefGoogle Scholar
  8. Mandelis A (1984) Frequency-domain photopyroelectric spectroscopy of condensed phases (ppes)—a new, simple and powerful spectroscopic technique. Chem Phys Lett 108(4):388–392CrossRefADSGoogle Scholar
  9. Mandelis A, Zver MM (1985) Theory of photopyroelectric spectroscopy of solids. J Appl Phys 57(9):4421–4430CrossRefADSGoogle Scholar
  10. McGinness J, Corry P, Proctor P (1973) Amorphous-semiconductor switching in melanins. Science 183(4127):853–855CrossRefADSGoogle Scholar
  11. Melo WLB, Pawlicka A, Sanches R, Mascarenhas S, Faria RM (1993) Determination of thermal parameters and the optical gap of poly(3-butylthiophene) films by photopyroelectric spectroscopy. J Appl Phys 74(2):979–982CrossRefADSGoogle Scholar
  12. Meredith P, Riesz J (2004) Radiative relaxation quantum yields for synthetic eumelanin. Photochem Photobiol 79(2):211–216CrossRefPubMedGoogle Scholar
  13. Meredith P, Powell B, Riesz J, Vogel R, Blake D, Subianto S, Will G, Kartini I (2005) Broad band photon harvesting biomolecules for photovoltaics. In: Critchley C, Collings A (eds) Artificial photosynthesis, Wiley, arXiv/cond-mat/0406097Google Scholar
  14. Murphy JC, Aamodt LC (1981) Optically detected photothermal imaging. Appl Phys Lett 38(4):196–198CrossRefADSGoogle Scholar
  15. Powell B, Baruah T, Bernstein N, Brake K, McKenzie RH, Meredith P, Pederson MR (2004) A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. J Chem Phys 120(18):8608–8615CrossRefPubMedADSGoogle Scholar
  16. Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. Wiley, NYGoogle Scholar
  17. Tam AC, Wong YH (1980) Optimization of optoacoustic cell for depth profiling studies of semiconductor surfaces. Appl Phys Lett 36(6):471–473CrossRefADSGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  • José Eduardo de Albuquerque
    • 1
  • Clare Giacomantonio
    • 2
  • Andrew G. White
    • 2
  • Paul Meredith
    • 2
  1. 1.Departamento de FísicaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Soft Condensed Matter Physics Group, School of Physical SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations