Advertisement

European Biophysics Journal

, Volume 35, Issue 2, pp 170–180 | Cite as

Prediction of charge-induced molecular alignment: residual dipolar couplings at pH 3 and alignment in surfactant liquid crystalline phases

  • Markus ZweckstetterEmail author
Article

Abstract

Recently we reported that the alignment tensor of a biological macromolecule, which was dissolved in a dilute suspension of highly negatively charged filamentous phage at close to neutral pH, can be predicted from the molecule’s 3D charge distribution and shape (Zweckstetter et al. 2004). Here it is demonstrated that this approach is also applicable to alignment of proteins in liquid crystalline phases formed by filamentous phage at low pH. Residual dipolar couplings (RDCs) predicted by our simple electrostatic model for the B1 domain of protein G in fd phage at pH 3 fit very well with the experimental values. The sign of charge–shape predicted one-bond 1H–15N dipolar couplings for the B1 domain of protein G (GB1) was inverted at pH 3 compared to neutral pH, in agreement with experimental observations. Our predictions indicate that this is a feature specific for GB1. In addition, it is shown that RDCs induced in the protein ubiquitin by the presence of a positively charged surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide can be predicted accurately by a simple electrostatic alignment model. This shows that steric and electrostatic interactions dominate weak alignment of biomolecules for a wide range of pH values both in filamentous phage and in surfactant liquid crystalline phases.

Keywords

Molecular alignment Residual dipolar coupling Liquid crystal Electrostatics NMR Cetylpyridinium bromide Surfactant CHARMM 

Notes

Acknowledgements

The author thanks Laura G. Barrientos, Tobias S. Ulmer and Wolfgang Peti for making the RDCs of GB1, GB3 and ubiquitin available. This work was supported by the Max Planck Society. M.Z. is the recipient of a DFG Emmy Noether Fellowship (ZW71/1-4).

References

  1. Al-Hashimi HM, Valafar H, Terrell M, Zartler ER, Eidsness MK, Prestegard JH (2000) Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J Magn Reson 143:402–406CrossRefADSGoogle Scholar
  2. Antosiewicz J, Mccammon JA, Gilson MK (1994) Prediction of pH-dependent properties of proteins. J Mol Biol 238:415–436CrossRefGoogle Scholar
  3. Azurmendi HF, Bush CA (2002) Conformational studies of blood group A and blood group B oligosaccharides using NMR residual dipolar couplings. Carbohydr Res 337:905–915CrossRefGoogle Scholar
  4. Barrientos LG, Dolan C, Gronenborn AM (2000) Characterization of surfactant liquid crystal phases suitable for molecular alignment and measurement of dipolar couplings. J Biomol NMR 16:329–337CrossRefGoogle Scholar
  5. Barrientos LG, Louis JM, Gronenborn AM (2001) Characterization of the cholesteric phase of filamentous bacteriophage fd for molecular alignment. J Magn Reson 149:154–158CrossRefADSGoogle Scholar
  6. Bewley CA (2001) Rapid validation of the overall structure of an internal domain-swapped mutant of the anti-HIV protein cyanovirin-N using residual dipolar couplings. J Am Chem Soc 123:1014–1015CrossRefGoogle Scholar
  7. Bewley CA, Clore GM (2000) Determination of the relative orientation of the two halves of the domain-swapped dimer of cyanovirin-N in solution using dipolar couplings and rigid body minimization. J Am Chem Soc 122:6009–6016CrossRefGoogle Scholar
  8. Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25:475–481Google Scholar
  9. Clore GM, Starich MR, Gronenborn AM (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120:10571–10572CrossRefGoogle Scholar
  10. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837CrossRefGoogle Scholar
  11. Debye P, Hueckel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Zeitschr 24:185–206Google Scholar
  12. Delaglio F, Kontaxis G, Bax A (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122:2142–2143CrossRefGoogle Scholar
  13. Ferrarini A (2003) Modeling of macromolecular alignment in nematic virus suspensions. Application to the prediction of NMR residual dipolar couplings. J Phys Chem B 107:7923–7931CrossRefGoogle Scholar
  14. Fleming K, Gray D, Prasannan S, Matthews S (2000) Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J Am Chem Soc 122:5224–5225CrossRefGoogle Scholar
  15. Gabriel JCP, Camerel F, Lemaire BJ, Desvaux H, Davidson P, Batail P (2002) Swollen liquid-crystalline lamellar phase based on extended colloidal solid-like sheets: application for the structure determination f biomolecules using NMR. Abstr Pap Am Chem Soc 223:U394–U394Google Scholar
  16. Gaemers S, Bax A (2001) Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. J Am Chem Soc 123:12343–12352CrossRefGoogle Scholar
  17. Gouy DL (1910) Sur la constitution de la charge électrique a la surface d’un électrolyte. Ann Phys 9:457–468Google Scholar
  18. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  19. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074CrossRefGoogle Scholar
  20. Helfrich W (1978) Steric interaction of fluid membranes in multilayer systems. Z Naturforsch A 33:305–315ADSGoogle Scholar
  21. Hus JC, Marion D, Blackledge M (2001) Determination of protein backbone structure using only residual dipolar couplings. J Am Chem Soc 123:1541–1542CrossRefGoogle Scholar
  22. Jung YS, Sharma M, Zweckstetter M (2004) Simultaneous assignment and structure determination of protein backbones by using NMR dipolar couplings. Angew Chem Int Ed 43:3479–3481CrossRefGoogle Scholar
  23. Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–2338CrossRefGoogle Scholar
  24. Liu DJ, Day LA (1994) Pf1 virus structure—helical coat protein and DNA with paraxial phosphates. Science 265:671–674CrossRefADSGoogle Scholar
  25. Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Nguyen DT, Ngo T, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Wiorkiewiczkuczera J, Karplus M (1992) Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. FASEB J 6:A143–A143Google Scholar
  26. McGrath KM (1997) Formation of two lamellar phases in the dilute region of a quasiternary surfactant system. Langmuir 13:1987–1995CrossRefGoogle Scholar
  27. Meier S, Haussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24:351–356CrossRefGoogle Scholar
  28. Meiler J, Prompers JJ, Peti W, Griesinger C, Bruschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098–6107CrossRefGoogle Scholar
  29. Meiler J, Peti W, Griesinger C (2003) Dipolar couplings in multiple alignments suggest alpha helical motion in ubiquitin. J Am Chem Soc 125:8072–8073CrossRefGoogle Scholar
  30. Mohana-Borges R, Goto NK, Kroon GJA, Dyson HJ, Wright PE (2004) Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings. J Mol Biol 340:1131–1142CrossRefGoogle Scholar
  31. Peti W, Meiler J, Bruschweiler R, Griesinger C (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124:5822–5833CrossRefGoogle Scholar
  32. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540CrossRefGoogle Scholar
  33. Prosser RS, Losonczi JA, Shiyanovskaya IV (1998) Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution. J Am Chem Soc 120:11010–11011CrossRefGoogle Scholar
  34. Rabenstein B, Knapp EW (2001) Calculated pH-dependent population and protonation of carbon-monoxy-myoglobin conformers. Biophys J 80:1141–1150CrossRefGoogle Scholar
  35. Rabenstein B, Ullmann GM, Knapp EW (1998) Energetics of electron-transfer and protonation reactions of the quinones in the photosynthetic reaction center of Rhodopseudomonas viridis. Biochemistry 37:2488–2495CrossRefGoogle Scholar
  36. Ramirez BE, Bax A (1998) Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium. J Am Chem Soc 120:9106–9107CrossRefGoogle Scholar
  37. Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797CrossRefGoogle Scholar
  38. Sass J, Cordier F, Hoffmann A, Cousin A, Omichinski JG, Lowen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121:2047–2055CrossRefGoogle Scholar
  39. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73CrossRefADSGoogle Scholar
  40. Stigter D (1982) Mobility of water near charged interfaces. Adv Colloid Interface Sci 16:253–265CrossRefGoogle Scholar
  41. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114CrossRefADSGoogle Scholar
  42. Tolman JR (2002) A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecular NMR spectroscopy. J Am Chem Soc 124:12020–12030CrossRefGoogle Scholar
  43. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins - information for structure determination in solution. P Natl Acad Sci USA 92:9279–9283CrossRefADSGoogle Scholar
  44. Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122:9340–9341CrossRefGoogle Scholar
  45. Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191CrossRefGoogle Scholar
  46. Valafar H, Prestegard JH (2003) Rapid classification of a protein fold family using a statistical analysis of dipolar couplings. Bioinformatics 19:1549–1555CrossRefGoogle Scholar
  47. Vold RR, Prosser RS (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J Magn Reson Ser B 113:267–271CrossRefGoogle Scholar
  48. Warren JJ, Moore PB (2001) Application of dipolar couplings to the refinement of the solution structure of the Sarcin-Ricin loop RNA. J Biomol NMR 20:311–323CrossRefGoogle Scholar
  49. Zimmermann K, Hagedorn H, Heuck CC, Hinrichsen M, Ludwig H (1986) The ionic properties of the filamentous bacteriophages Pf1 and Fd. J Biol Chem 261:1653–1655Google Scholar
  50. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792CrossRefGoogle Scholar
  51. Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86:3444–3460CrossRefGoogle Scholar
  52. Zweckstetter M, Schnell JR, Chou JJ (2005) Determination of the packing mode of the coiled-coil domain of cGMP-dependent protein kinase I in solution using charge-predicted dipolar couplings. J Am Chem Soc 127(34):11918–11919CrossRefGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  1. 1.Department of NMR–based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations