Advertisement

European Biophysics Journal

, Volume 35, Issue 1, pp 79–88 | Cite as

Lateral pressure profiles in cholesterol–DPPC bilayers

  • Michael Patra
Article

Abstract

By means of atomistic molecular dynamics simulations, we study cholesterol–DPPC (dipalmitoyl phosphatidylcholine) bilayers of different composition, from pure DPPC bilayers to a 1:1 mixture of DPPC and cholesterol. The lateral pressure profiles through the bilayers are computed and separated into contributions from the different components. We find that the pressure inside the bilayer changes qualitatively for cholesterol concentrations of about 20% or higher. The pressure profile in the inside of the bilayer then turns from a rather flat shape into an alternating sequence of regions with large positive and negative lateral pressure. The changes in the lateral pressure profile are so characteristic that specific interaction between cholesterol and molecules such as membrane proteins mediated solely via the lateral pressure profile might become possible.

Keywords

Lipid bilayer Energetics Ion channel regulation Thermodynamics 

Notes

Acknowledgements

I would like to acknowledge valuable discussions with Mikko Karttunen and the support from the European Union (MRTN-CT-2004-512331).

References

  1. Anézo C, de Vries AH, Höltje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433CrossRefGoogle Scholar
  2. Ben-Shaul A (1995) Molecular theory of chain packing, elasticity and lipid-protein interaction in lipid bilayers. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, vol 1. Elsevier, Amsterdam, pp 359–401Google Scholar
  3. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342Google Scholar
  4. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefADSGoogle Scholar
  5. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002-2013. The force field description is available at http://moose.bio.ucalgary.ca/Downloads/files/lipid.itp
  6. Bezrukov SM (2000) Functional consequences of lipid packing stress. Curr Opin Colloid Interface Sci 5:237–243CrossRefGoogle Scholar
  7. Bishop TC, Skeel RD, Schulten K (1997) Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. J Comput Chem 18:1785–1791CrossRefGoogle Scholar
  8. Cantor RS (1997a) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344CrossRefPubMedGoogle Scholar
  9. Cantor RS (1997b) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1723–1725Google Scholar
  10. Cantor RS (1999a) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56CrossRefPubMedGoogle Scholar
  11. Cantor RS (1999b) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639PubMedGoogle Scholar
  12. de Kruijff B (1997) Lipids beyond the bilayer. Nature 386:129–130CrossRefPubMedADSGoogle Scholar
  13. Eckenhoff RG (2001) Promiscuous ligands and attractive cavities: How do the inhaled anesthetics work? Mol Interv 1:258–268PubMedGoogle Scholar
  14. Endress E, Heller H, Casalta H, Brown MF, Bayerl TM (2002) Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry 41:13078–13086CrossRefPubMedGoogle Scholar
  15. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592CrossRefADSGoogle Scholar
  16. Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I (2004a) Impact of cholesterol on voids in phospholipid membranes. J Chem Phys 121:12676–12689CrossRefPubMedADSGoogle Scholar
  17. Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I (2004b) Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091CrossRefPubMedGoogle Scholar
  18. Frenkel, Smit (2002) Understanding molecular simulation: from algorithms to applications. Academic, San DiegoGoogle Scholar
  19. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J Chem Phys 108:7397–7409CrossRefADSGoogle Scholar
  20. Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509CrossRefPubMedGoogle Scholar
  21. Gurtovenko AA, Patra M, Karttunen M, Vattulainen I (2004) Cationic DMPC/DMTAP lipid bilayers: Molecular dynamics study. Biophys J 86:3461–3472CrossRefPubMedGoogle Scholar
  22. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  23. Harries D, Ben-Shaul A (1997) Conformational chain statistics in a model lipid bilayer: Comparison between mean field and Monte Carlo calculations. J Chem Phys 106:1609–1619CrossRefADSGoogle Scholar
  24. Heinz H, Paul W, Binder K (2004) Local pressure tensor in computer simulations of molecular systems. arXiv.org:cond-mat/0309014Google Scholar
  25. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472CrossRefGoogle Scholar
  26. Hofsäß C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206PubMedGoogle Scholar
  27. Höltje M, Förster T, Brandt B, Engels T, von Rybinski W, Höltje HD (2001) Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. Biochim Biophys Acta 1511:156–167. The topology file is available from http://www.gromacs.org/topologies/uploaded_molecules/cholesterol.tgz Google Scholar
  28. Killian JA, van Meer G (2001) The “double lives” of membrane lipids. EMBO Rep 21:91–95CrossRefGoogle Scholar
  29. Kinnunen PKJ (2000) Lipid bilayers as osmotic response elements. Cell Physiol Biochem 10:243–250CrossRefPubMedGoogle Scholar
  30. Lee CC, Petersen NO (2004) The triple layer model: a different perspective on lipid bilayers. J Chin Chem Soc 51:1183–1191Google Scholar
  31. Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893CrossRefADSGoogle Scholar
  32. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317Google Scholar
  33. Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168CrossRefGoogle Scholar
  34. Marrink SJ, Berendsen HJC (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100:16729–16738CrossRefGoogle Scholar
  35. Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223PubMedGoogle Scholar
  36. Marsh D (2002) Membrane water-penetration profiles from spin labels. Eur Biophys J 31:559–562CrossRefPubMedGoogle Scholar
  37. McMullen DPW, McElhaney RN (1996) Physical studies cholesterol-phospholipid interactions. Curr Opin Colloid Interface Sci 1:83–90CrossRefGoogle Scholar
  38. Miyamoto S, Kollman PA (1992) SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962CrossRefGoogle Scholar
  39. Patra M, Karttunen M, Hyvönen M, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645PubMedGoogle Scholar
  40. Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I (2004a) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108:4485–4494CrossRefGoogle Scholar
  41. Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I (2004b) Long-range interactions in molecular simulations: accuracy and speed. arXiv.org:cond-mat/0410210Google Scholar
  42. Rankin SE, Addona GH, Kloczewiak MA, Bugge B, Miller KW (1997) The cholesterol dependance of activation and fast desensitization of the nicotinic acetylcholine receptor. Biophys J 73:2446–2455PubMedGoogle Scholar
  43. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J Comp Phys 23:327–341CrossRefADSGoogle Scholar
  44. Scheidt HA, Müller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278:45563–45569CrossRefPubMedGoogle Scholar
  45. Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048–5061CrossRefADSGoogle Scholar
  46. Siminovitch DJ, Ruocco MJ, Makriyannis A, Griffin RG (1987) The effect of cholesterol on lipid dynamics and packing in diether phosphatidylcholine bilayers. X-ray diffraction and 2H-NMR study. Biochim Biophys Acta 901:191–200Google Scholar
  47. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726CrossRefADSGoogle Scholar
  48. Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of escheria coli - the MscL gene, protein and activities. Annu Rev Physiol 59:633–657CrossRefPubMedGoogle Scholar
  49. Sutter M, Fiechter T, Imanidis G (2004) Correlation of membrane order and dynamics derived from time-resolved fluorescence measurements with solute permeability. J Pharmaceut Sci 93:2090–2107CrossRefGoogle Scholar
  50. Templer RH, Castle SJ, Curran AR, Rumbles G, Klug DR (1998) Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylchlonine. Faraday Discuss 111:41–53CrossRefPubMedGoogle Scholar
  51. Tieleman DP, Berendsen HJC (1996) Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880. The topology file is available from http://moose.bio.ucalgary.ca/Downloads/files/dppc.itp
  52. Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270PubMedGoogle Scholar
  53. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459CrossRefADSGoogle Scholar
  54. Tu K, Klein ML, Tobias DJ (1998) Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J 75:2147–2156PubMedCrossRefGoogle Scholar
  55. van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288PubMedCrossRefGoogle Scholar
  56. Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287PubMedGoogle Scholar

Copyright information

© EBSA 2005

Authors and Affiliations

  1. 1.Biophysics and Statistical Mechanics Group, Laboratory of Computational EngineeringHelsinki University of TechnologyHUTFinland
  2. 2.Physical Chemistry 1, Centre for Chemistry and Chemical EngineeringLund UniversityLundSweden

Personalised recommendations